Physics, asked by Bhupeshdewangan8761, 24 days ago

A bus accelerates uniformly from 100mper second to 220metre per second in 1 minutes calculate a.the acceleration of the car b distance covered by the car in the interval

Answers

Answered by Yuseong
14

Appropriate Question:

A bus accelerates uniformly from 100 m/s to 220 m/s in 1 minute. Calculate

a) The acceleration of the car.

b) Distance covered by the car in the interval.

Answer:

Acceleration = 2 m/s²

Distance = 9600 m

Explanation:

As per the provided information in the given question, we have :

  • Initial velocity (u) = 100 m/s
  • Final velocity (v) = 220 m/s
  • Time (t) = 1 minute = 60 s

We have been asked to calculate acceleration and the distance covered by the car in the interval.

 \large {\underline { \sf {Calculating \; Acceleration :}}}

❝ Acceleration is nothing the but the rate of change in velocity. ❞ It is a vector quantity and its SI unit is m/s². As I said that acceleration rate of change in velocity. So, we can write in the form of equation,

  \dashrightarrow \quad \rm { Acceleration= \dfrac{Change \; in \; velocity}{Time} } \\

  • Change is velocity can also be defined as the difference of the final velocity and the initial velocity.

  \dashrightarrow \quad \rm { Acceleration= \dfrac{Final \; Velocity - Initial \; Velocity}{Time} } \\

  • Acceleration is denoted by a
  • Final velocity is denoted by v
  • Initial velocity is denoted by u
  • Time is denoted by t

So,

  \bigstar \quad \underline{\boxed{ \bf {a = \dfrac{v-u}{t} }}} \\

Substitute the value in the formula.

  \dashrightarrow \quad \rm {a = \Bigg ( \dfrac{220 - 100}{60} \Bigg ) \; m \: s^{-2} } \\

  \dashrightarrow \quad \rm {a = \Bigg ( \dfrac{120}{60} \Bigg ) \; m \: s^{-2} } \\

  \dashrightarrow \quad \underline{\boxed{ \bf {a = 2 \; m \: s^{-2} }}} \\

The acceleration of the car is 2 m/s².

\rule{200}2

 \large {\underline { \sf {Calculating \; Distance \; Travelled :}}}

We can calculate the distance travelled easily by using the third equation of motion.

Third equation of motion:

  \bigstar \quad \underline{\boxed{ \bf {v^2 - u^2 = 2as }}} \\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • s denotes distance

  \dashrightarrow \quad \rm {(220)^2 - (100)^2 = 2 \times 2 \times s } \\

  \dashrightarrow \quad \rm {48400 - 10000 = 4 \times s } \\

  \dashrightarrow \quad \rm {38400 = 4s } \\

  \dashrightarrow \quad \rm {\cancel{\dfrac{38400}{4}} = s } \\

  \dashrightarrow \quad \underline{\boxed{ \bf {s = 9600 \; m  }}} \\

The distance travelled by the bus is 9600 m.


rsagnik437: Niceee ! :)
Answered by SparklingThunder
6

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A bus accelerates uniformly from 100 m/s to 220 m/s in 1 minute . Calculate

  • a. The acceleration of the bus .

  • b. Distance covered by the bus in the interval .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • a. Acceleration of the bus = 2 m/ \tt {s}^{2}

  • b. Distance Covered by bus = 9600 m

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Initial velocity ( u ) = 100 m/s

  • Final velocity ( v ) = 220 m/s

  • Time taken ( t ) = 1 minute = 60 seconds

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • a. The acceleration of the bus .

  • b. Distance covered by the bus in the interval .

\green{ \large \underline{ \mathbb{\underline{ EQUATIONS \:  OF  \: MOTION \: USED : }}}}

 \purple{ \boxed{\begin{array}{l}  \sf v = u + at \\  \\ \sf  {v}^{2} -  {u}^{2} = 2as \:  \:   \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

    \large{\purple{ \underline{\underline{\textsf{a. Acceleration of the bus}}}}}

 \displaystyle \sf \longrightarrow v = u + at  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \displaystyle \sf \longrightarrow 220 = 100 + a(60)  \\\  \\ \displaystyle \sf \longrightarrow 220 = 100 + 60a \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow 100 + 60a = 220 \:  \:  \:   \\  \\ \displaystyle \sf \longrightarrow 60a = 220 - 100  \: \:   \\  \\ \displaystyle \sf \longrightarrow 60a = 120  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow a =  \frac{120}{60}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow a = 2 \: m {s}^{ - 2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

    \large{\purple{ \underline{\underline{\textsf{b. Distance Covered by bus}}}}}

  \displaystyle \sf \longrightarrow  {v}^{2}  -  {u}^{2} = 2as \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow  {(220)}^{2}  -  {(100)}^{2}  = 2(2)s  \: \\  \\ \displaystyle \sf \longrightarrow  48400 - 10000 = 4s \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\displaystyle \sf \longrightarrow   38400 = 4s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow  4s = 38400 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow  s = \frac{38400}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow s = 9600 \: m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \purple{\boxed{ \begin{array}{l}    \textsf{a. Acceleration of the bus = 2 m${ \sf s}^{ - 2}$ } \\  \\  \textsf{b. Distance Covered by bus = 9600 m} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  • Acceleration

Acceleration is the rate at which velocity changes with time .

  • Initial Velocity

Initial velocity is the velocity of the object before the effect of acceleration .

  • Final Velocity

Final velocity is the velocity of the object after the effect of acceleration .

  • Distance

Distance is the length of actual path covered by a moving object in a given time interval .

   \Large{\purple{\boxed{\begin{array}{l} \textsf{Equations of motion : } \\  \\  \textsf{v = u + at} \\  \\   \displaystyle\textsf{s = ut +  $ \sf\frac{1}{2}a {t}^{2} $ } \\  \\ \sf  {v}^{2} -  {u}^{2}  =  2as \end{array}}}}

Similar questions