Physics, asked by rsponnaluri, 11 months ago

a bus acceleration from rest a constant rate alpha for some time after which it decelerates at a constant raye beta to come to rest .if the total time elapsed is t seconds ,then the total distance travelled is .. answer please
answer in right way step by step

Answers

Answered by archer54
1

Answer:

the total distance is given as follows

Attachments:
Answered by shadowsabers03
1

The distance travelled with the constant acceleration \sf{\alpha} from rest for a time \sf{t_1} is,

\longrightarrow\sf{s_1=(0)t_1+\dfrac{1}{2}\alpha(t_1)^2}

\longrightarrow\sf{s_1=\dfrac{1}{2}\alpha(t_1)^2}

The velocity attained after \sf{t_1} seconds will be,

\longrightarrow\sf{v_1=0+\alpha t_1}

\longrightarrow\sf{v_1=\alpha t_1}

The distance travelled with the constant deceleration \sf{-\beta} for a time \sf{t-t_1} seconds is (total time = \sf{t})

\longrightarrow\sf{s_2=v_1(t-t_1)-\dfrac{1}{2}\beta(t-t_1)^2}

\longrightarrow\sf{s_2=\alpha t_1(t-t_1)-\dfrac{1}{2}\beta(t-t_1)^2}

\longrightarrow\sf{s_2=\alpha t_1t-\alpha(t_1)^2-\dfrac{1}{2}\beta(t^2-2t_1t+(t_1)^2)}

\longrightarrow\sf{s_2=\alpha t_1t-\alpha(t_1)^2-\dfrac{1}{2}\beta t^2+\beta t_1t-\dfrac{1}{2}\beta(t_1)^2}

Since the bus is coming to rest, final velocity is zero.

\longrightarrow\sf{0=\alpha t_1-\beta(t-t_1)}

\longrightarrow\sf{\alpha t_1=\beta t-\beta t_1}

\longrightarrow\sf{t_1=\dfrac{\beta}{\alpha+\beta}\ t\quad\quad\dots(1)}

Then total displacement,

\longrightarrow\sf{s=s_1+s_2}

\longrightarrow\sf{s=\dfrac{1}{2}\alpha(t_1)^2+\alpha t_1t-\alpha(t_1)^2-\dfrac{1}{2}\beta t^2+\beta t_1t-\dfrac{1}{2}\beta(t_1)^2}

\longrightarrow\sf{s=-\dfrac{1}{2}\left(\alpha+\beta\right)(t_1)^2+(\alpha+\beta)t_1t-\dfrac{1}{2}\beta t^2}

From (1),

\longrightarrow\sf{s=-\dfrac{1}{2}\left(\alpha+\beta\right)\left(\dfrac{\beta}{\alpha+\beta}\ t\right)^2+(\alpha+\beta)\left(\dfrac{\beta}{\alpha+\beta}\ t\right)t-\dfrac{1}{2}\beta t^2}

\longrightarrow\sf{s=-\dfrac{\beta^2t}{2(\alpha+\beta)}+\beta t^2-\dfrac{1}{2}\beta t^2}

\longrightarrow\sf{\underline{\underline{s=\dfrac{\beta t^2(\alpha+\beta-1)}{2(\alpha+\beta)}}}}

If deceleration is taken as \sf{\beta,}

\longrightarrow\sf{\underline{\underline{s=-\dfrac{\beta t^2(\alpha-\beta-1)}{2(\alpha-\beta)}}}}

Similar questions