Math, asked by Anonymous, 5 months ago

A bus covers a distance of 90 km at a uniform speed had the speed been 15 km/hr more it would have taken 30 minutes less for the journey. find the original speed of the bus​

Answers

Answered by Anonymous
0

Let original speed =xkm/hr

⇒ Time taken to travel =90/xhr

⇒ New speed =(x+15)km/hr

⇒ Time taken to travel = 90/x+15hr

∴ 90/x=90xx+15+1/2

=>90/x+90/x-15=1/2

=>90[1/x-1/x+15]=1/2

=>x+15-x/x(x+15)=1/180

⇒ 15X180=x(x+15)

⇒ 15×180=x(x+15)

⇒ 2700=x^2+15x

⇒ x^2+15x−2700=0

⇒ x^2 +60x−45x−2700=0

⇒ x(x+60)−45(x+60)=0

⇒ (x+60)(x−45)=0

Speed can not be negative.

∴ The original speed of the train is 45km/hr

Answered by EliteZeal
57

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • A bus covers a distance of 90 km at a uniform speed

  • If the speed is 15 km/hr more it would have taken 30 minutes less for the journey

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Original speed of the bus

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

  • Let the orginal speed of bus be "b"

  • Let the time taken with original speed be "T1"

  • Let the time taken with new speed be "T2"

 \:\:

We know that ,

 \:\:

 \sf T = \dfrac { D } { S } ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • T = Time

  • D = Distance

  • S = Speed

 \:\:

 \underline{\bold{\texttt{With original speed :}}}

 \:\:

  • T = T1

  • D = 90

  • S = b

 \:\:

Putting the above values in ⓵

 \:\:

 \sf T = \dfrac { D } { S }

 \:\:

 \sf T1 = \dfrac { 90} { b} ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{With new speed :}}}

 \:\:

  • T = T2

  • D = 90

  • S = b + 15

 \:\:

Putting the above values in ⓵

 \:\:

 \sf T = \dfrac { D } { S }

 \:\:

 \sf T2 = \dfrac { 90} { b + 15} ⚊⚊⚊⚊ ⓷

 \:\:

Given that , If the speed is 15 km/hr more it would have taken 30 minutes less for the journey

 \:\:

 \underline{\bold{\texttt{Converting minutes to hours to match the units :}}}

 \:\:

 \sf 1 \: Minute = \dfrac { 1 } { 60 } \: Hour

 \:\:

 \sf 30 \: Minutes = \dfrac { 30 } { 60 } \: Hour

 \:\:

So,

 \:\:

 \sf T1 = T2 + \dfrac { 30 } { 60 }

 \:\:

 \sf T1 = T2 + \dfrac { 1 } { 2 } ⚊⚊⚊⚊ ⓸

 \:\:

Putting the values of T1 & T2 from ⓶ & ⓷ to ⓸

 \:\:

 \sf T1 = T2 + \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 90} { b} = \dfrac { 90} { b + 15} + \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 90} { b} = \dfrac { 90 \times 2 + b + 15} {2(b + 15)}

 \:\:

 \sf \dfrac { 90} { b} = \dfrac { 180 + b + 15} { 2b + 30}

 \:\:

 \sf \dfrac { 90} { b} = \dfrac { 195 + b} { 2b + 30}

 \:\:

Cross multiplication

 \:\:

➜ 90(2b + 30) = b(195 + b)

 \:\:

➜ 180b + 2700 = 195b + b²

 \:\:

➜ b² + 195b - 180b - 2700 = 0

 \:\:

➜ b² + 15b - 2700 = 0

 \:\:

Splitting the middle term

 \:\:

➜ b² + 60b - 45b - 2700 = 0

 \:\:

➜ b(b + 60)-45(b + 60) = 0

 \:\:

➜ (b + 60)(b - 45) = 0

 \:\:

  • b = - 60
  • b = 45

 \:\:

As speed can't be negative hence ,

 \:\:

➨ b = 45

 \:\:

  • Hence the original speed of the bus is 45 km/hr
Similar questions