Math, asked by rouhan65, 2 months ago

A bus decreases it's speed from 80 Km h^-1 to 60 km h^-1 in 5s. find the acceleration of the bus​

Answers

Answered by Anonymous
44

Answer:

Given :-

  • A bus decreases it's speed from 80 km/h to 60 km/h in 5 seconds.

To Find :-

  • What is the acceleration of the bus.

Formula Used :-

\clubsuit First Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{v =\: u + at}}}\\

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • t = Time

Solution :-

First, we have to convert km/s into m/s :

{\normalsize{\bold{\purple{\underline{\bigstar\: In\: case\: of\: initial\: velocity\: (u) \: :-}}}}}

:\implies \sf Initial\: Velocity =\: 80\: km/h

:\implies \sf Initial\: Velocity =\: 80 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup\\

:\implies \sf Initial\: Velocity =\: \dfrac{400}{18}\: m/s

:\implies \sf\bold{\green{Initial\: Velocity =\: 22.22\: m/s}}

{\normalsize{\bold{\purple{\underline{\bigstar\: In\: case\: of\: final\: velocity\: (v)\: :-}}}}}\\

:\implies \sf Final\: Velocity =\: 60\: km/h

:\implies \sf Final\: Velocity =\: 60 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup\\

:\implies \sf Final\: Velocity =\: \dfrac{300}{18}\: m/s

\implies \sf\bold{\green{Final\: Velocity =\: 16.67\: m/s}}

Now, we have to find the acceleration :

Given :

  • Final Velocity (v) = 16.67 m/s
  • Initial Velocity (u) = 22.22 m/s
  • Time (t) = 5 seconds

According to the question by using the formula we get,

:\longrightarrow \sf 16.67 =\: 22.22 + a(5)

:\longrightarrow \sf 16.67 =\: 22.22 + 5a

:\longrightarrow \sf 16.67 - 22.22 =\: 5a

:\longrightarrow \sf \bigg(\dfrac{1667}{100}\bigg) - \bigg(\dfrac{2222}{100}\bigg) =\: 5a

:\longrightarrow \sf \bigg(\dfrac{1667 - 2222}{100}\bigg) =\: 5a

:\longrightarrow \sf \bigg(\dfrac{- 555}{100}\bigg) =\: 5a

:\longrightarrow \sf (- 5.55) =\: 5a

:\longrightarrow \sf - 5.55 =\: 5a

:\longrightarrow \sf \dfrac{- 5.55}{5} =\: a

:\longrightarrow \sf - 1.11 =\: a

:\longrightarrow \sf\bold{\red{a =\: - 1.11\: m/s^2}}

\therefore The acceleration of the bus is - 1.11 m/.

Answered by XxHappiestWriterxX
63

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dashrightarrow   \: \underline{\large\boxed{ \red{ \rm \pmb Question :}}}

  • A bus decreases it's speed from 80 Km h^-1 to 60 km h^-1 in 5s. find the acceleration of the bus.

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dashrightarrow   \: \underline{\large\boxed{ \pink{ \rm \pmb Given :}}}

  • A bus decreases it's speed from 80 Km h^-1 to 60 km h^-1 in 5s

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dashrightarrow   \: \underline{\large\boxed{ \purple{ \rm \pmb To \: Find :}}}

  • find the acceleration of the bus

 \:  \:  \:  \:  \:   \maltese \:  \large{\underline{\underline{ \sf \blue {Using \:  formula : }}}}

    \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:    \dag \:  {\boxed{\boxed{\red{ \bf \: v = u + at}}}}  \: \dag

Where as :

 \:  \:  \:  \:  \:   :\rightarrow {\underline{\underline { \rm \: v = final  \: velocity}}}

 \:  \:  \:  \:  \:   :\rightarrow {\underline{\underline{{ \rm \: u = initial  \: velocity}}}}

 \:  \:  \:  \:  \:   :\rightarrow {\underline{\underline{ \rm \: a = acceleration}}}

 \:  \:  \:  \:  \:   :\rightarrow {\underline{\underline{ \rm \: t = time}}}

Convert km/s into m/s :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :  \: \longmapsto \rm \: u = 80 km/hrs

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :  \: \longmapsto \rm u = \: 80 \times  \dfrac{5}{18}   \: m/s

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :  \: \longmapsto \rm u = \dfrac{400}{18} m/s

So in decimals the u is = 22.22 m/s.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \maltese \:  \:  {\underline{\underline{ \rm \: So \:  now \:  find \:  v}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :  \: \longmapsto \rm v =60km/hrs

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :  \: \longmapsto \rm v = 60× \dfrac{5}{18}  m/s

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :  \: \longmapsto \rm v =  \dfrac{300}{18} m/s

So in decimals the v is = 16.67 m/s.

Calculation :

  • v = 16.67 m/s

  • u = 22.22 m/s

  • t = 5 s

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \rightarrow \rm \: v = u + at

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \rightarrow \rm 16.67 = 22.22 + a(5)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \rightarrow \rm 16.67= 22.22+5a

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \rightarrow \rm 16.67 - 22.22 = 5a

  \:  \:  \:  \:  \:  \:    \:  :  \rightarrow \rm     \bigg \{\dfrac{1667}{100}  - \dfrac{2222}{100} \bigg \}= 5a

 \:    \:  \:  \:  \:  \:  \:    \:  :  \rightarrow \rm     \bigg \{\dfrac{1667 - 2222}{100}   \bigg \}= 5a

 \:  \:  \:   \:  \:  \:  \:  \:  \:    \:  :  \rightarrow \rm     \bigg \{\dfrac{ - 555}{100}  \bigg \}= 5a

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:    \:  :  \rightarrow \rm     \big\{  - 5.55\big\}= 5a

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:    \:  :  \rightarrow \rm   a =  \dfrac{ - 5.55}{5}

\:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:    \:  :  \rightarrow \rm   a =  - 1.11 \: m/s^2

\therefore  \rm {\underline{\underline{The  \: acceleration  \: of  \: bus  \: is \:  1.11  \: m/s^2}}}

Similar questions