Math, asked by abel55, 2 months ago

A bus decreases it's speed from 80 km/h to 60 km/h in 10 seconds find the acceleration of the bus​

Answers

Answered by sethrollins13
103

Given :

  • Initial Velocity (u) = 80 km/h
  • Final Velocity (v) = 60 km/h
  • Time Taken (t) = 10 sec .

To Find :

  • Acceleration of the bus .

Solution :

\longmapsto\tt{Initial\:Velocity(u)=80\times\dfrac{5}{18}=22.22\:m/s}

\longmapsto\tt{Final\:Velocity(v)=60\times\dfrac{5}{18}=16.67\:m/s}

Using 1st Equation :

\longmapsto\tt\boxed{v=u+at}

Putting Values :

\longmapsto\tt{16.67=22.22+a(10)}

\longmapsto\tt{16.67-22.22=10a}

\longmapsto\tt{-5.55=10a}

\longmapsto\tt{a=\cancel\dfrac{-5.55}{10}}

\longmapsto\tt\bf{a=-0.55\:{m/s}^{2}}

So , The Acceleration of the bus is -0.55 m/s² .

_______________________

Three Equations Of Motion :

  • v = u + at
  • s = ut + 1/2 at²
  • v² - u² = 2as

Here :

  • v = Final Velocity
  • u = Initial Velocity
  • t = Time Taken
  • a = Acceleration
  • s = Distance Travelled

_______________________

Answered by MяMαgıcıαη
40
  • \boxed{\sf{\green{Acceleration\:(a) = \bf{-0.556\:m/s^{2}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Explanation :

\begin{gathered}\underline{\bf\red{\bigstar}{\underline{Given}}}\begin{cases} & \sf{Initial\:velocity\:(u)\:of\:a\:bus = \bf{80\;km/h}} \\ \\ & \sf{Final\:velocity\:(v)\:of\:a\:bus = \bf{60\:km/h}}\\ \\ & \sf{Time\:taken\:(t)\:= \bf{6\;s}} \end{cases} \end{gathered}

\underline{\bf\red{\bigstar}{\underline{To\:Find}}:-}

  • Acceleration (a) of a bus = ?

\underline{\bf\red{\bigstar}{\underline{Solution}}:-}

  • Here, we have initial velocity (u), final velocity (v) and time taken (t) by a bus. Firstly, we will convert units of initial velocity (u) and final velocity (v) from km/h to m/s. Then, by putting all values in first equation of motion, we will get required acceleration.

Converting units of initial velocity into m/s :-

\qquad\leadsto\quad\sf Initial\:velocity = \bigg(80\:\times\:\dfrac{5}{18}\bigg)\:m/s

\qquad\leadsto\quad{\bf{\pink{ Initial\:velocity = 22.22\:m/s}}}

★ Converting units of Final velocity into m/s :-

\qquad\leadsto\quad\sf Final\:velocity = \bigg(60\:\times\:\dfrac{5}{18}\bigg)\:m/s

\qquad\leadsto\quad{\bf{\red{ Final\:velocity = 16.66\:m/s}}}

Using first eqⁿ of motion to find "a" :-

\qquad\longrightarrow\quad\sf v = u + at

\qquad\longrightarrow\quad\sf 16.66 = 22.22 + a(10)

\qquad\longrightarrow\quad\sf 16.66 - 22.22 = 10a

\qquad\longrightarrow\quad\sf  -5.56 = 10a

\qquad\longrightarrow\quad\sf  \dfrac{-5.56}{10} = a

\qquad\longrightarrow\quad\sf  \dfrac{\cancel{-5.56}}{\cancel{10}} = a

\qquad\longrightarrow\quad{\bf{\purple{a = -0.556\:m/s^{2}}}}

\therefore\:{\underline{\sf{Hence,\:acceleration\:(a) = \bf{-0.556\:m/s^{2}}}}}

\underline{\bf\red{\bigstar}{\underline{More\:to\:know}}:-}

Three equations of motion :-

  • v = u + atㅤㅤㅤㅤㅤ[Used above]
  • s = ut + (1/2) at²
  • v² = u² + 2as

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions