Physics, asked by fighty, 2 months ago

A bus increases its speed from 72 km/h to180 km/h in 10 seconds. Its acceleration is?

a} 6 metre per second square

a} 5 metre per second square

a} 3 metre per second square

a} 8 metre per second square​

Answers

Answered by Anonymous
109

Provided that:

  • Initial velocity = 72 kmph
  • Final velocity = 180 kmph
  • Time = 10 seconds

To calculate:

  • The acceleration

Solution:

  • The acceleration = 3 metre per second sq.

Using concepts:

  • Acceleration formula
  • Formula to convert kmph-mps

Using formulas:

  • {\small{\underline{\boxed{\pmb{\sf{1 \: kmph \: = \dfrac{5}{18} \: mps}}}}}}

  • {\small{\underline{\boxed{\pmb{\sf{a \: = \dfrac{v-u}{t}}}}}}}

Required solution:

~ Firstly let us convert kmph-mps

Converting 72 kmph into mps

:\implies \sf 72 \times \dfrac{5}{18} \\ \\ :\implies \sf \cancel{72} \times \dfrac{5}{\cancel{{18}}} \\ \\ :\implies \sf 4 \times 5 \\ \\ :\implies \sf 20 \: mps \\ \\ {\pmb{\sf{Henceforth, \: converted!}}}

Converting 180 kmph into mps

:\implies \sf 180 \times \dfrac{5}{18} \\ \\ :\implies \sf \cancel{180} \times \dfrac{5}{\cancel{{18}}} \\ \\ :\implies \sf 10 \times 5 \\ \\ :\implies \sf 50 \: mps \\ \\ {\pmb{\sf{Henceforth, \: converted!}}}

Therefore,

  • Initial velocity = 20 mps
  • Final velocity = 50 mps

~ Now let's calculate the acceleration!

:\implies \sf Acceleration \: = \dfrac{Change \: in \: velocity}{Time} \\ \\ :\implies \sf a \: = \dfrac{v-u}{t} \\ \\ :\implies \sf a \: = \dfrac{50-20}{10} \\ \\ :\implies \sf a \: = \dfrac{30}{10} \\ \\ :\implies \sf a \: = 3 \: ms^{-2} \\ \\ :\implies \sf Acceleration \: = 3 \: ms^{-2}

  • Henceforth, acceleration = 3 m/s sq. Therefore, option C is correct.

Additional information:

Something about acceleration!

\begin{gathered}\boxed{\begin{array}{c}\\ \bf What \: is \: acceleration? \\ \\ \sf The \: rate \: of \: change \: of \: velocity \: of \: an \\ \sf object \: with \: respect \: to \: time \\ \sf is \: known \: as  \: acceleration. \\  \\ \sf \star \: Negative \: acceleration \: is \: known \: as \: deacceleration. \\ \sf \star \: Deacceleration \: is \: known \: as \: retardation. \\ \sf \star \: It's \: SI \: unit \: is \: ms^{-2} \: or \: m/s^2 \\ \sf \star \: It \: may \: be \: \pm ve \: or \: 0 \: too \\ \sf \star \: It \: is \: a \: vector \: quantity \\ \\ \bf Conditions \: of \pm ve \: or \: 0 \: acceleration \\  \\ \sf \odot \: Positive \: acceleration: \: \sf When \: \bf{u} \: \sf is \: lower \: than \: \bf{v} \\ \sf \odot \: Negative \: acceleration: \: \sf When \: \bf{v} \: \sf is \: lower \: than \: \bf{u} \\ \sf \odot \: Zero \: acceleration: \: \sf When \: \bf{v} \:  \sf and \: \bf{u} \: \sf are \: equal \end{array}}\end{gathered}

Answered by sethrollins13
159

Given :

  • A bus increases its speed from 72 km/h to180 km/h in 10 seconds.

To Find :

  • Acceleration of the body .

Solution :

\longmapsto\tt{Initial\:Velocity=72\:km/hr=20\:m/s}

\longmapsto\tt{Final\:Velocity=180\:km/hr=50\:m/s}

\longmapsto\tt{Time\:Taken=10\:sec}

Using Formula :

\longmapsto\tt\boxed{Acceleration=\dfrac{v-u}{t}}

Putting Values :

\longmapsto\tt{\dfrac{50-20}{10}}

\longmapsto\tt{\dfrac{30}{10}}

\longmapsto\tt\bf{3\:{m/s}^{-2}}

_____________________

Acceleration :

It is defined as the rate of change of velocity of the object .

Formula of Acceleration is :-

\longrightarrow\tt{Acceleration=\dfrac{v-u}{t}}

Here :

  • v = Final Velocity
  • u = Initial Velocity
  • t = time taken

_____________________

Similar questions