Physics, asked by ShubhanshuShukla0000, 19 hours ago

a bus is moving along a straight road with a speed of 126 km per hour is brought to stop within a distance of 500 m. what is retardation of bus and how long does it take for bus to stop
please give me full Answer​

Answers

Answered by Yuseong
3

Answer:

Retardation = + 1.255 m/s²

Time = 28.57 s

Explanation:

As per the provided information in the given question, it has been provided to us that a bus's initial velocity is 126 km/h and then it comes to rest after covering the distance of 500 m. We've been asked to calculate retardation and time taken. We have,

  • Initial velocity (u) = 126 km/h
  • Final velocity (v) = 0 m/s (As it comes to rest)
  • Distance covered (s) = 500 m

Before commencing the steps, firstly we need to convert initial velocity in m/s.

  \longrightarrow \sf{\quad { u = 126 \; km \; h^{-1}}} \\

  • 1 km/h = 5/18 m/s

  \longrightarrow \sf{\quad { u =\Bigg \lgroup \cancel{126} \times \dfrac{5}{\cancel{18}} \Bigg \rgroup \; m \; s^{-1}}} \\

  \longrightarrow \sf{\quad { u =\Bigg \lgroup 7 \times 5 \Bigg \rgroup \; m \; s^{-1}}} \\

  \longrightarrow \quad \boxed{\sf{ u = 35 \; m \; s^{-1} } }\\

Now, we'll calculate the acceleration first to calculate the retardation. By using the third equation of motion,

  \longrightarrow \quad \boxed{\textbf{\textsf{v}}^\textbf{\textsf{2}} - \textbf{\textsf{u}}^\textbf{\textsf{2}} = \textbf{\textsf{2as}} } \\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • s denotes distance

  \longrightarrow \sf{\quad {(0)^2 - (35)^2 =2(a)(500)  }} \\

  \longrightarrow \sf{\quad {0 - 1225 = 1000a}} \\

  \longrightarrow \sf{\quad {- 1225 = 1000a}} \\

  \longrightarrow \sf{\quad { \cancel{\dfrac{ - 1225}{1000}} = a}} \\

  \longrightarrow \sf{\quad {- 1.225 =a }} \\

Retardation is nothing but the acceleration with negative sign so,

  \longrightarrow \quad \underline{\boxed {\textbf{\textsf{ +1.225}} \; \textbf{\textsf{m}} \; \textbf{\textsf{s}}^{\textbf{\textsf{-2}}} = \textbf{\textsf{Retardation}} }} \\

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

Now, we have to calculate time taken. By using the first equation of motion,

  \longrightarrow \quad \boxed{\textbf{\textsf{v = u + at}}} \\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

  \longrightarrow \sf{\quad { 0 = 35 + (- 1.225)a}} \\

  \longrightarrow \sf{\quad { 0 - 35 =- 1.225t}} \\

  \longrightarrow \sf{\quad {  - 35 =- 1.225t}} \\

  \longrightarrow \sf{\quad { \cancel{\dfrac{ - 35 }{-1.225}}= t}} \\

  \longrightarrow \quad \underline{\boxed{ \textbf{\textsf{ 28.57 \; s = t}}}} \\

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

Therefore,

⠀⠀⠀⠀★ Retardation = + 1.255 m/s²

⠀⠀⠀⠀★ Time = 28.57 s

Similar questions