Physics, asked by BawalLounda, 5 months ago

A bus starts from rest and moves down a hill with constant acceleration. The bus travels a distance of 400 m in 10 seconds. If mass of the bus is 5 metric tonne, then what will be its acceleration and force acting on it?​

Answers

Answered by Anonymous
20

\sf Given \begin{cases} & \sf{Initial\; Velocity, u = \bf{0\;m/s}}  \\ & \sf{Distance, d = \bf{400\;m} }  \\ & \sf{Time, t = \bf{10\;s}} \\ & \sf{Mass, m = 5\;metric\;tonne = \bf{5000\; kg}}\end{cases}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ By using 2nd equation of motion, \\ \\

\star\;{\boxed{\sf{\purple{s = ut + \dfrac{1}{2} at^2}}}}\\ \\

:\implies\sf 400 = 0 \times 10 + \dfrac{1}{2} a(10)^2\\ \\

:\implies\sf 400 = 0 + \dfrac{1}{2} \times 100a\\ \\

:\implies\sf 400 = \dfrac{1}{2} \times 100a\\ \\

:\implies\sf 400 = 50a\\ \\

:\implies\sf a = \cancel{ \dfrac{400}{50}}\\ \\

:\implies{\boxed{\pink{\sf{a ={\frak{ 8\;{\sf{m/s^2}}}}}}}}\;\bigstar\\ \\

━━━━━━━━━━━━━━━━━━━━━━

☯ Now, As we know, \\ \\

\star\;{\boxed{\sf{\purple{F = ma}}}}\\ \\

:\implies\sf F = 5000 \times 8\\ \\

:\implies{\boxed{\pink{\sf{F ={\frak{ 40,000\;{\sf{N}}}}}}}}\;\bigstar\\ \\

\therefore\;{\sf{Hence,\;Force\;acting\;on\;body\;is\;40,000\;N.}}

Answered by ItsMagician
10

Given :-

initial velocity, u = 0m/s

distance, s = 400m

time taken, t = 10 seconds

mass, metric tonne (m) = 5 metric tonne = 5000kg

Formula used :-

s = ut + 1/2at²

Now putting the values in :-

\sf 400 = (0 \times 10) + ( \frac{1}{2}  \times a {10}^{2} ) \\

\sf 400 = 0 +  \frac{1}{2}  \times a \times 100 \\

\sf 400 =  1 \times a \times 50 \\

\sf 400 = 50a \\

\sf \frac{400}{50}  = a \\

\sf 8 = a \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Therefore,

the acceleration acquired here is of 8m/s²

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, force applied :-

Formula used :-

F = m*a

putting values in it :-

F = m(5000) * a(8)

F = 5000*8

F = 40,000

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Therefore, the force applied here is 40,000N

Similar questions