Physics, asked by Raek9768, 10 months ago

A bus travels a distance of x km at a speed of 60 km/h and returns back with the speed of 30/km . calculate the average speed for the entire journey

Answers

Answered by vitel2927
0

Answer:

4

Explanation:

the fomula 2v1v2/v1+v2

v1=60 v2= 30

2.60.30/60+30

4

plese do me as a brainlest

Answered by MrChauhan96
38

\bf{\underline{\underline{Question}}}

A bus travels a distance of x km at a speed of 60 km/h and returns back with the speed of 30/km . calculate the average speed for the entire journey.

\bf{\underline{\underline{Given,}}}

\:

\bf{s_{1}\:=\:x}

\:

\bf{v_{1}\:=\:60\:km/h}

\:

\bf{s_{2}\:=\:x}

\:

\bf{v_{2}\:=\:30\:km/h}

\:

\bf{\underline{\underline{Solution}}}

\:

\bf{\boxed{t_{1}}\:=\:{\frac{s_{1}}{v_{1}}}}

\:

\tt{Putting\:values}

\:

\bf{t_{1}}\:=\:{\frac{x}{60}}

\:

\tt{In\:Second\:case}

\:

\bf{\boxed{t_{2}}\:=\:{\frac{s_{2}}{v_{2}}}}

\:

\tt{Putting\:values}

\:

\bf{t_{2}}\:=\:{\frac{x}{30}}

\:

\tt{Total\:time\:taken\:,}

\:

\bf{T}={t_{1}}+{t_{2}}

\:

=\: \bf{\frac{x}{60}}+{\frac{x}{30}}

\:

\tt{Lcm\:of\:60\:and\:30\:will\:be\:60}

\:

=\: \bf{\frac{x+2x}{60}}

\:

=\: \bf{\cancel\frac{3x}{60}}

\:

\tt{Total\:Time\:taken}=\: \bf{\frac{x}{20}}

\:

\tt{Total\: Distance\: covered}\\{\tt{x+x\:=\:2x\:km}}

\:

\small\tt{\boxed{Average\:speed\:=\:{\frac{Total\:Distance}{Total\:Time\:Taken}}}}

\:

\bf{Average\:speed}\:=\:{\frac{2x}{x/20}}

\:

\bf{\boxed{Average\:speed\:=\:{40\:km/h}}}

\:

\bf{\underline{\underline{Thanks}}}

\:

Similar questions