Math, asked by ansh258, 1 year ago

A BUS TRAVELS THE FIRST ONE - THIRD DISTANCE AT A SPEED OF 10 KM H-1 , THE NEXT ONE - THIRD DISTANCE ATA SPEED OF 20 KM H-1 AND THE NEXT ONE - THIRD DISTANCE AT A SPEED OF 30 KM H-1. WHAT IS THE AVERAGE SPEED OF THE BUS?​

Answers

Answered by prashantahuja1
1

Answer:

Step-by-step explanation:

Let total distance is dd kmkm.

Using s=uts=ut  \Rightarrow t_1= \dfrac{\dfrac{d}{3}}{10}=\dfrac{d}{30}⇒t  

1

​  

=  

10

3

d

​  

 

​  

=  

30

d

​  

 hours,

\Rightarrow t_2= \dfrac{\dfrac{d}{3}}{20}=\dfrac{d}{60}⇒t  

2

​  

=  

20

3

d

​  

 

​  

=  

60

d

​  

 hours,

\Rightarrow t_3= \dfrac{\dfrac{d}{3}}{30}=\dfrac{d}{90}⇒t  

3

​  

=  

30

3

d

​  

 

​  

=  

90

d

​  

 hours,  

\text{Average speed}= \dfrac{\text{Total distance}}{\text{Total Time}}Average speed=  

Total Time

Total distance

​  

 

Average speed= \dfrac {d}{\dfrac{d}{30} + \dfrac{d}{60} +\dfrac{d}{90}}=\dfrac{180}{11} {km}{h}= \dfrac{50}{11} ms^{-1}=  

30

d

​  

+  

60

d

​  

+  

90

d

​  

 

d

​  

=  

11

180

​  

kmh=  

11

50

​  

ms  

−1

Answered by Rohit18Bhadauria
0

\rule{300}{2}

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}

See this attachment

This is the best possible answer

\large{\boxed{\mathbf\pink{\fcolorbox{cyan}{black}{Hope\:you\:have}}}}

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Understood}}}}

<marquee>♥️Please mark it as♥️</marquee>

\huge\underline\mathcal\red{Brainliest}

</p><p>\huge{\boxed{\mathbb\green{\fcolorbox{red}{blue}{Thank\:You}}}}

\rule{300}{2}

Attachments:
Similar questions