Science, asked by ManasJyotiboro, 1 year ago

a bus turns from rest and moves with uniform acceleration and attains a velocity of 50 km/ h in 3 minutes. Find the acceleration and distance travelled by the bus.

Answers

Answered by spardha1
5
U = 0
V= 50 km
T= 3 min
A=?

By first law of newton
V= u+ at
50 =0 + a×3
50 =0+3a
A = 50/3
A= 16.666
Ans..........


Hope it will definitely help you in UNDERSTANDING

spardha1: Please MARK my ans as brainlist if it helps you and if u like it
Answered by vaishu775
3

Given :-

  • A bus starts from rest and moving with uniform acceleration attains a velocity of 50 km/h in 3 minutes.

To Find :-

  • What is the acceleration and the distance travelled.

Formula Used :-

♣ Acceleration Formula :

\mapsto \sf\boxed{\bold{\pink{a =\: \dfrac{v - u}{t}}}}

♣ Second Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{s =\: ut + \dfrac{1}{2}at^2}}}

where,

  • a = Acceleration
  • v = Final Velocity
  • u = Initial Velocity
  • s = Distance Travelled
  • t = Time Taken

Solution :-

First, we have to convert the time minutes into seconds :

\implies \sf Time =\: 3\: minutes

\begin{gathered}\implies \sf Time =\: 3 \times 60\: seconds\: \: \bigg\lgroup \small\bold{\pink{1\: minutes =\: 60\: seconds}}\bigg\rgroup\\\end{gathered}

\implies \sf \bold{\purple{Time =\: 180\: seconds}}

Now again, we have to convert final velocity km/h into m/s :

\implies \sf Final\: Velocity =\: 50\: km/h

\begin{gathered}\implies \sf Final\: Velocity =\: 50 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \small\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup\\\end{gathered}

\implies \sf Final\: Velocity =\: \dfrac{250}{18}\: m/s

\implies \sf\bold{\purple{Final\: Velocity =\: 13.89\: m/s}}

Now, we have to find the acceleration :

Given :

  • Final Velocity (v) = 13.89 m/s
  • Initial Velocity (u) = 0 m/s
  • Time Taken (t) = 180 seconds

According to the question by using the formula

According to the question by using the formula we get,

\longrightarrow \sf a =\: \dfrac{13.89 - 0}{180}

\longrightarrow \sf a =\: \dfrac{13.89}{180}

\longrightarrow \sf\bold{\red{a =\: 0.077\: m/s^2}}

{\small{\bold{\underline{\therefore\: The\: acceleration\: of\: a\: bus\: is\: 0.077\: m/s^2\: .}}}}

Now, we have to find the distance travelled by a bus :

Given :

  • Initial Velocity (u) = 0 m/s
  • Time Taken (t) = 180 seconds
  • Acceleration (a) = 0.077 m/s²

According to the question by using the formula we get,

\longrightarrow \sf s =\: (0)(180) + \dfrac{1}{2} \times (0.077)(180)^2

\longrightarrow \sf s =\: 0 \times 180 + \dfrac{1}{2} \times 0.077 \times 180 \times 180

\longrightarrow \sf s =\: 0 + \dfrac{1}{2} \times 0.077 \times 32400

\longrightarrow \sf s =\: 0 + \dfrac{1}{2} \times 2494.8

\longrightarrow \sf s =\: 0 + 1247.4

\longrightarrow \sf\bold{\red{s =\: 1247.4\: m}}

{\small{\bold{\underline{\therefore\: The\: distance\: travelled\: by\: a\: bus\: is\: 1247.4\: m\: .}}}}

\begin{gathered} \large \qquad \boxed{\boxed{\begin{array}{cc} \maltese \: \: \bf v = u + at \\ \\ \maltese \: \: \bf s = ut + \dfrac{1}{2}a {t}^{2} \\ \\ \maltese \: \: \bf{v}^{2} - {u}^{2} = 2as\end{array}}}\end{gathered}

Similar questions