a+c=135 then find
(1+cota)(1+cotc)
Answers
Answered by
2
a + c = 135°
take both sides tan
tan( a + c) = tan135° = tan( 180° -45°)
( tana + tanc )/( 1 - tana.tanc) = -1
( tana + tanc ) = -1 + tana.tanc
1/cota + 1/cotc = -1 + 1/cota.cotc
cota + cotc = -cota.cotc + 1
cota + cotc + cota.cotc +1 = 1 +1
cota + 1 + cotc ( 1 + cota) = 2
( cota + 1)(cotc +1) = 2
hence,
( 1 + cota )( 1 + cotc ) = 2
take both sides tan
tan( a + c) = tan135° = tan( 180° -45°)
( tana + tanc )/( 1 - tana.tanc) = -1
( tana + tanc ) = -1 + tana.tanc
1/cota + 1/cotc = -1 + 1/cota.cotc
cota + cotc = -cota.cotc + 1
cota + cotc + cota.cotc +1 = 1 +1
cota + 1 + cotc ( 1 + cota) = 2
( cota + 1)(cotc +1) = 2
hence,
( 1 + cota )( 1 + cotc ) = 2
Similar questions