Physics, asked by Anonymous, 11 months ago

(a) calculate the total and average kinetic energy of 32g methane molecules at 27°c .

(B) cal. the root mean square speed, average speed, and most probable speed of methane at 27°c.​

Answers

Answered by Anonymous
50

\huge{\underline{\underline{\mathbf{Answer:-}}}}

(A) 3741.3j \: mo {l}^{ - 1}

(B) Average speed - 629.9 \: m {s}^{ - 1}

Probable speed - 558.1 \: m {s}^{ - 1}

\huge{\underline{\underline{\mathbf{Explanation:-}}}}

(A) Total K.E. =

 \frac{3}{2} nrt

 \frac{3}{2}  \times  \frac{32}{16} mol \times 8.314j {k}^{ - 1}  \: mo {l}^{ - 1}  \times 300k

( molar mass of CH4 = 16g mol)

\boxed{7482.6j}

Average K. E. =  \frac{3}{2} kt

 \frac{3}{2}  \times  \frac{8.314}{6.02 \times  {10}^{23} }  \times 300k

6.21×10²¹

_________________________________________

(B) Root mean square speed,

c =  \sqrt{ \frac{3rt}{m} }

\bold{by\:using\:  CGS\:  unit\:}

then,

T => 27 + 273 = 300 k

✡ M (for CH4) = 16g

we get,

 u_{c.m.s} =  \sqrt{ \frac{3 \times 8.314 \times  {10}^{7} \times 300 }{16} }

6.839×10 cm s ★

\bold{by\:using\:  SI \:  unit\:both\:values\:are\:same}

average speed = 629.9 ms¹

probable speed = 558.1 ms¹

_________________________________________


Anonymous: No more comments.
nidhi2956: what
AdorableAstronaut: Mst jaan ♡3♡
AdorableAstronaut: xD
AdorableAstronaut: Mst @reetu
Anonymous: thanks...!!
Anonymous: Osm☺
Anonymous: thanku :)
Anonymous: great✌
Anonymous: thanks ❤
Answered by Anonymous
29

\huge{\mathfrak{\red{\underline{\underline{Solution\:1:-}}}}}

\star{\bf{\red{\underline{Average\:Kinetic\: energy:-}}}}

\sf{K.E.=\frac{3}{2} K_{b}T}

\sf{=\frac{3}{2} \frac{RT}{N_{A}}}

\sf{Where,}

\sf{R=8.314\:JK^{-1}\: mol^{-1}}

\sf{N_{A}=6.022 × 10^{23}}

\sf{T=27+273=300\:K}

\sf{Ē_{kinetic}=\frac{3}{2}×\frac{8.314×300}{6.022×10^{23}}}

\sf{=6.21×10^{-21}J}

{\boxed{\boxed{\bf{So,\:Average \:Kenetic\: energy=6.21×10^{-21}J}}}}

\star{\bf{\red{\underline{Total\:Kinetic\: energy:-}}}}

\sf{Total\:K.E.=\frac{3}{2}nRT}

\sf{=\frac{3}{2}×\frac{32}{16}×8.314×300}

\sf{Total\:K.E.=7482.6J}

{\boxed{\boxed{\bf{So,\:Total\:Kenetic\: energy=7482.6J}}}}

\huge{\mathfrak{\red{\underline{\underline{Solution\:2:-}}}}}

\sf{We\:have,}

\sf{R.M.S., \mu =\frac {3RT}{M}^{\frac{1}{2}}}

\sf{Where,}

\sf{M=molar\:mass}

\sf{In\:case\:of\: oxygen\:gas,}

\sf{T=27+273=300K}

\sf{R=8.314{(Kg\:m^{2}/{s^{2}})/K\:mol}}

\sf{Since\:molar\:mass\:of\: oxygen\:gas=32\:gm/mol}

\sf{=3.2×10^{-2}\:Kg/mol}

\sf{Hence,}

\sf{\mu =\frac {3RT}{M}^{\frac{1}{2}}}

\sf{=\frac{3×8.314×300}{3.2×10^{-2}}}^{\frac{1}{2}}

\sf{=233831.25^{\frac{1}{2}}}

\sf{=483.56\:m/s}

Hence the R.M speed from oxygen gas at 0°C (273k) = 483.5 m/s.


Anonymous: Great✌
Anonymous: thanks ❤️
Anonymous: Superb!☺
Anonymous: Thanks ❤️
Similar questions