Physics, asked by Simran2982, 10 months ago

A calorimeter contains 50 g of water at 50°C. The temperature falls to 45°C in 10 minutes. When the calorimeter contains 100 g of water at 50°C, it takes 18 minutes for the temperature to become 45°C. Find the water equivalent of the calorimeter.

Answers

Answered by shilpa85475
0

Explanation:

Step 1:

Let water be calorimeter-equivalent w.

Temperature-change = 5°C

water  of Specific heat = 4200 \mathrm{J} / \mathrm{Kg}^{\circ} \mathrm{C}

Rate of heat flow is given by

q=\frac{m s \Delta T}{t}

Step 2:

first case

q_{1}=\frac{(w+50 \times 10-3) \times 4200 \times 5}{10}

second case

q_{2}=\frac{(w+50 \times 10-3) \times 4200 \times 5}{18}

From the theory of calorimeters these two heat flow rates should be equal to one another.

q_{1}=q_{2}

\frac{(w+50 \times 10-3) \times 4200 \times 5}{10}=\frac{(w+50 \times 10-3) \times 4200 \times 5}{18}

18\left(w+50 \times 10^{-3}\right)=10\left(w+100 \times 10^{-3}\right)

w=12.5 \times 10^{-3} \mathrm{kg}

w=12.5 g

Similar questions