Physics, asked by virendrasingh7961, 11 months ago

A calorimeter of negligible heat capacity contains 100 cc of water at 40°C. The water cools to 35°C in 5 minutes. The water is now replaced by K-oil of equal volume at 40°C. Find the time taken for the temperature to become 35°C under similar conditions. Specific heat capacities of water and K-oil are 4200 J kg−1 K−1 and 2100 J kg−1 K−1 respectively. Density of K-oil = 800 kg m−3.

Answers

Answered by shilpa85475
1

Explanation:

Step 1:

Given data in the question  

Water volume, V=100 \mathrm{cc}=100 \times 10^{-3} \mathrm{m}^{3}

The temperature changes for the liquid, \Delta \theta=5^{\circ} \mathrm{C}

T = 5 min

T is time  

Step 2:

In case of  water,

\frac{m s \Delta \theta}{t}=\frac{K A}{l}\left(T_{1}-T_{0}\right)

\frac{m s}{t}=\frac{K A}{l} \frac{\left(T_{1}-T_{0}\right)}{\Delta \theta}

\frac{100 \times 10^{-3} \times 1000 \times 4200}{5}=\frac{K A}{l} \frac{\left(313-T_{0}\right)}{\Delta \theta}    ……… (eq)^n  ( i )

In case of k-oil

\frac{m s}{t}=\frac{K A}{l} \frac{9\left(T_{1}-T_{0}\right)}{\Delta \theta}  

\frac{m s}{t}=\frac{K A}{l} \frac{\left(T_{1}-T_{0}\right)}{\Delta \theta}

\frac{V p s}{t}=\frac{K A}{l} \frac{\left(T_{1}-T_{0}\right)}{\Delta \theta}

\frac{100 \times 10^{-3} \times 800 \times 2100}{t}=\frac{K A}{l} \frac{313-T_{0}}{\Delta \theta}          ……..(eq)^n  ( ii )

From equation (i) and equation (ii),

\frac{100 \times 10^{-3} \times 800 \times 2100}{t}=\frac{100 \times 10^{-3} \times 1000 \times 4200}{5}

\frac{100 \times 10^{-3} \times 800 \times 2100}{100 \times 10^{-3} \times 1000 \times 4200}=\frac{t}{5}

\frac{800 \times 2100}{1000 \times 4200}=\frac{t}{5}

\frac{8 \times 21}{10 \times 42}=\frac{t}{5}

\frac{8}{10 \times 2}=\frac{t}{5}

\frac{8}{20}=\frac{t}{5}

t=\frac{40}{20}

t=2 m i n

Similar questions