Math, asked by kanupriya1167, 5 months ago

A can do a piece of work in 15 days B does it in 10 days after 3 days B goes away in how many days they will complete the work together​

Answers

Answered by EliteZeal
44

A n s w e r

 \:\:

G i v e n

 \:\:

  • A can do a piece of work in 15 days

  • B can do the work in 10 days

 \:\:

F i n d

 \:\:

After 3 days B goes away in how many days A will complete the work together

 \:\:

S o l u t i o n

 \:\:

  • Let A can finish the left work in "m" days after B left

 \:\:

 \underline{\bold{\texttt{One day work of A :}}}

 \:\:

A can do a piece of work in 15 days

 \:\:

 \sf \dfrac { 1 } { 15 }

 \:\:

 \underline{\bold{\texttt{One day work of B :}}}

 \:\:

B can do the work in 10 days

 \:\:

 \sf \dfrac { 1 } { 10}

 \:\:

 \underline{\bold{\texttt{One day work when A \& B work together :}}}

 \:\:

 \sf \dfrac { 1 } { 15 } + \dfrac { 1 } { 10 }

 \:\:

 \sf \dfrac { 2 + 3 } { 30 }

 \:\:

 \sf \dfrac { 5 } { 30 }

 \:\:

 \sf \dfrac { 1 } { 6 }

 \:\:

 \underline{\bold{\texttt{3 days work when A \& B work together :}}}

 \:\:

 \sf \dfrac { 1 } { 6 } \times 3

 \:\:

 \sf \dfrac { 1 } { 2 }

 \:\:

 \underline{\bold{\texttt{Remaining work :}}}

 \:\:

 \sf 1 - \dfrac { 1 } { 2 }

 \:\:

 \sf \dfrac { 2 - 1 } { 2 }

 \:\:

 \sf \dfrac { 1 } { 2 }

 \:\:

 \underline{\bold{\texttt{"m" days work of A :}}}

 \:\:

 \sf \dfrac { 1 } { 15 } \times m

 \:\:

As we assumed that A can finish the remaining work in "m" days

 \:\:

Thus ,

 \:\:

 \sf \dfrac { 1 } { 15 } \times m = \dfrac { 1 } { 2 }

 \:\:

 \sf m = \dfrac { 15 } { 2 }

 \:\:

  •  \bf Hence \: A \: can \: finish \: the \: remaining \: work \: in \: \dfrac { 15 } { 2 } \: days

 \:\:

 \underline{\bold{\texttt{Total days needed to complete work :}}}

 \:\:

Number of days both worked together + Number of days A worked alone

 \:\:

 \sf 3 + \dfrac { 15 } { 2 }

 \:\:

 \sf \dfrac { 6 + 15 } { 2 }

 \:\:

 \sf \dfrac { 21 } { 2 }

 \:\:

 \sf \therefore \: They \: will \: take \: \dfrac { 21 } { 2 } \: days \: to \: complete \: the \: work

Similar questions