Math, asked by Mister360, 3 months ago

A canal is 300 cm wide and 120 cm deep. The water in the canal is flowing at a speed of 20 km/h. How much area will it irrigate in 20 minutes if 8 cm of standing water is desired?

Answers

Answered by divyajadhav66
17

Answer:

volume \: of \: water \: that \: flows \: in \: the \: canal \: in \: one \: hour

 = width \: of \: the \: canal \times dept \: of \: canal \times speed \: of \: the \: canal \: water

 = 3 \times 1.2 \times 20 \times 1000 {m}^{3}  = 72000m {}^{3}

 \sf \pink{in  \: 20 \: minutes \: the \: volume \: of \: water \: in \: the \: canal \: }

 = 72000 \times  \frac{20}{60} {m}^{3}   = 24000 {m}^{3}

 \sf \pink{area \: irrigated \: in20 \: minutes \: if \: 8 \: cm \: ie \: 0.08 \: m \: standing \: water \: is \: required \: }

 \sf \pink{ \frac{24000}{0.08} {m}^{2}   = 300000 {m}^{2}  = 30 \: hectares}

Answered by ItzBrainlyBeast
56

\large\textsf{                                                               }

\LARGE\mathfrak{\underline\textcolor{aqua}{✯\; Given :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Width of the canal = 300 cm = 3 m}

\qquad\tt{:}\longrightarrow\large\textsf{Depth of the canal = 120 cm = 1.2 m }

\qquad\tt{:}\longrightarrow\large\textsf{Speed of the water flow = 20 km/h = 20000 m/h .}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline\textcolor{aqua}{✯\; To \; \; Find :-}}

\large\textsf{                                                               }

  • The total area irrigated in 20 mins. if 8 cm ( 0.08 m ) of standing water is desired = ?

\large\textsf{                                                               }

\LARGE\mathfrak{\underline\textcolor{aqua}{✯\; Formula :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{Distance = Speed × Time }}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline\textcolor{aqua}{✯\; Solution :-}}

\large\textsf{                                                               }

↦ Distance covered by water in 1 hr. or 60 mins. = 20000 m .

↦ So , the distance covered by the water in 20 mins. :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Distance = Speed × Time}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = $\cfrac{\large\textsf{20}}{\large\textsf{60}}$×\large\textsf{20000}}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{Distance = $\cfrac{\large\textsf{20000 m}}{\large\textsf{3}}$}}

\large\textsf{                                                               }

↦ Amount of water irritated in 20 mins. :-

\qquad\tt{:}\longrightarrow\large\textsf{ \; \; \; =$\cfrac{\large\textsf{3 × 1.2 × 20000}}{\large\textsf{3}}$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ \; \; \; =$\cfrac{\large\textsf{72000}}{\large\textsf{3}}$}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{\; \; \; = 24000 m²}}

\large\textsf{                                                               }

↦ Area irrigated by this water if 8 cm or 0.08 m of standing water is desired will be :-

\qquad\tt{:}\longrightarrow\large\textsf{\; \; \;  =$\cfrac{\large\textsf{24000}}{\large\textsf{0.08}}$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{\; \; \;  =$\cfrac{\large\textsf{24000 × 100}}{\large\textsf{8}}$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = 3000 × 100}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{\; \; \; = 300000 m²}}

\large\textsf{                                                               }

∴ The total area irrigated in 20 mins. if 8 cm ( 0.08 m ) of standing water is desired = 300000 = 30 hector .

\large\textsf{                                                               }

\large\textsf\textcolor{purple}{     \; \; \; \;   \; \; \; \; \; \; \; \;                ◈ ━━━━━━━ ✪ ━━━━━━━ ◈}

\large\textsf{                                                               }

Similar questions