Math, asked by ambalikasingh2000, 7 months ago

A candidate who gets 36% marks in an examination fails by 24 marks but another candidate, who gets 43% marks , get 18 more marks than the minimum pass marks . Find the maximum marks and percentage of pass marks

Answers

Answered by MaIeficent
22

Step-by-step explanation:

Given:-

  • A candidate gets 36% marks in an examination fails by 24 marks.

  • Another candidate gets 43% marks, get 18 more marks than the minimum pass marks.

To Find:-

  • The maximum marks

  • The pass marks.

Solution:-

\sf Let \: the \: maximum \: marks \: be x

\sf And \: pass \: marks \: be y

\sf \underline{For \: first \: candidate:-}

\sf He\: scores \: 36\% \: marks \: and \: fails \: by\: 24 marks

\sf \implies 36\% \: of \: total \: marks = Pass \: marks - 24

\sf \implies 36\% \: of \: x = y - 24

\sf \implies \dfrac{36}{100} times x + 24 = y

\sf \implies \dfrac{36x}{100}  + 24 = y......(i)

\sf \underline{For \: second \: candidate:-}

\sf He\: scores \: 43\% \: marks \: and \: gets\: 24\:  marks\: more \: than \: pass \: marks

\sf \implies 43\% \: of \: total \: marks = Pass \: marks + 18

\sf \implies 43\% \: of \: x = y +18

\sf \implies \dfrac{43}{100} times x - 18 = y

\sf \implies \dfrac{43x}{100}  -18= y......(ii)

\sf \underline{From\: equations \: (i) \: and \: (ii) :-}

\sf\dfrac{36x}{100}  + 24 \:  \:  =  \:  \:  \dfrac{43x}{100}  - 18 \:  \:  = \:  \:  y

  \sf \implies24 + 18 = \dfrac{43x}{100}  -  \dfrac{36x}{100}

\sf \implies42 = \dfrac{43x - 36x}{100}

 \sf \implies \dfrac{7x}{100}   = 42

 \sf \implies x  = 42 \times  \dfrac{100}{7}

  \sf \implies x  = 6\times 100

  \sf \implies x  = 600

\sf Substituting \: x = 600\: in \: equation\: (i)

\sf \implies \dfrac{36x}{100}  + 24 = y

\sf \implies \dfrac{36\times600}{100}  + 24 = y

\sf \implies \dfrac{36x}{100}  + 24 = y

\sf \implies 216 + 24 = y

\sf \implies  y= 240

We have:-

  • x = 600

  • y = 240

\underline{\boxed{\pink{\rm \therefore Maximum \: marks = 600}}}

\underline{\boxed{\purple{\rm \therefore Pass \: marks = 240}}}

Answered by Anonymous
26

 \large { \underline{ \sf { \red{ Given:- }}}}

  • A candidate who gets 36% marks in an examination fails by 24 marks but another candidate, who gets 43% marks , get 18 more marks than the minimum pass marks .

 \large { \underline{ \sf { \green{ To \:  Find:-  }}}}

  • Find the maximum marks and percentage of pass marks.

 \large { \underline{ \sf { \orange{ Directions:-  }}}}

 \sf \purple{Let:- }

  • Let the passing marks be 'x'.
  • Let the Total marks be 'y'.

 \sf \purple{According \:  to \:  Question:- }

  • First candidate:- 36% of y + 24 = x
  • Second candidate:- 43% of y - 18 = x

  • Where, First Candidate = Second Candidate

 \sf \purple{So \:  now:- }

 \implies \mathtt{ \frac{36y}{100}  + 24 =  \frac{46y}{100}  - 18}

 \implies \mathtt{24 + 18 =  \frac{46y}{100}  -  \frac{36y}{100} }

 \implies \mathtt{42 =   \frac{7y}{100} }

 \implies \mathtt{42 \times 100 = 7y} \implies  \mathtt{\frac{4200}{7}  = y}

 \implies \pink{   \mathtt{y = 600}}{ \bigstar}

 \sf \purple{So \:  further :- }

 \implies \mathtt{ \frac{36y}{100}  + 24 = x}

 \implies \mathtt{ \frac{36}{100}   \times 600+ 24 = x}

 \implies \mathtt{ 36  \times 6+ 24 =x}

 \implies \mathtt{ 216+ 24 =x}

 \implies \mathtt \pink{ 240=x}{ \bigstar}

 \large \pink { \boxed{ \sf{Hence, \:  The \:  total  \: marks \:  are  \: 600. }}}

 \large \purple { \boxed{ \sf{And  \: the \:  passing \:  marks  \: are  \: 240.  }}}

Similar questions