Math, asked by AbhinSuresh1729, 4 months ago

A capacitor, a 101.5 mH inductor and a 5 ohm resistor are connected in series with a 50 Hz a.c. source. If current and voltage in the circuit are in phase, what is the capacitance of the capacitor ?​

Answers

Answered by aryan073
4

Given :

• Indicator =101.5mH

•Resistor =5ohm

• Current and voltage in the circuit are in phase

To Find :

• The capacitance of the capacitor =?

Formula :

\\ \blue\bigstar\boxed{\bf{tan\theta =\dfrac{\omega_{o}L- \dfrac{1}{\omega_{o} C}}{R}}}

Solution :

• In a LCR circuit , the current and the voltage are in phase \rm{ \theta=0} , when

\\ \implies\sf{tan\theta=\dfrac{\omega_{o}L-\dfrac{1}{\omega_{o}C}}{R}=0}

\\ \\ \implies\sf{\omega_{o}L=\dfrac{1}{\omega_{o}C}}

\\ \\ \implies\sf{C=\dfrac{1}{(\omega_{o})^{2}L}}

Here, \boxed{\bf{\omega=2 \pi f}}

\\ \\ \implies\sf{\omega= 2 \times 3.14 \times 50s^{-1}=314s^{-1}}

\\ \bullet\bf{L=101.5mH=101.5 \times 10^{-3} H}

\\ \\ \therefore \implies\sf{C=\dfrac{1}{(314s^{-1})^{2} \times (101.5 \times 10^{-3}H)}}

\\ \\ \implies\sf{C=\dfrac{10^{3}}{(314s^{-1})^{2} \times (101.5)H}}

\\ \\ \implies\sf{C= \approx 1000 uF}

Similar questions