Physics, asked by StudiousDG8723, 1 year ago

A capacitor is connected to a 12V battery through a resistance of 10Ohm. It is found that the potential difference across the capacitor rises to 4V in 1 micro seconds . Find the capacitance of the capacitor.

Answers

Answered by lidaralbany
12

Answer: C = 0.025\mu F

Explanation:

Given that,

Potential difference V_{0} = 12 V

The potential difference across the capacitor rise to 4 V.

Time  t = 1\mu sec

The equation of the charge is

Q = Q_{0}(1-e^{\dfrac{-t}{RC}})....(I)

We know,

Q = VC

Now, put the value of Q in equation (I)

CV= CV_{0}(1-e^{\dfrac{-t}{RC}})

After t = 1 micro sec

4C=12C(1-e^{\dfrac{-1\times10^{-6}sec}{100\Omega\times C}})

1-e^{(\dfrac{-1\times10^{-6}sec}{100\times C})} = \dfrac{1}{3}

e^{(\dfrac{-1\times10^{-6}sec}{100\times C})} = \dfrac{2}{3}

\dfrac{-1\times10^{-6}sec}{100\times C} = ln\dfrac{2}{3}\\

\dfrac{-1\times10^{-6}sec}{100\times C} = -0.4055

C = 0.025\mu F

Hence, the capacitance of the capacitor is C = 0.025\mu F.

Answered by mindfulmaisel
1

According to the given data, charge on a capacitor is calculated by

Q=Q_{ 0 }(1-{ e }^{ \frac { -t }{ RC } })

Given data states that the potential difference is 4 V in 1 microseconds therefore the maximum potential difference be 12 V.

Thereby,

Q=Q_{ 0 }(1-e^{ \left( \frac { -t }{ RC } \right) })

\Rightarrow CV=CV_{ 0 }(1-e^{ \left( \frac { -t }{ RC } \right) })

\Rightarrow After\quad t=10^{ -6 }seconds

\Rightarrow 4C=12C(1-e^{ \left( \frac { -{ 10 }^{ -6 } }{ RC } \right) })

\Rightarrow\frac { 1 }{ 3 } =(1-e^{ \left( \frac { -{ 10 }^{ -6 } }{ RC } \right) })

\Rightarrow -e^{ \left( \frac { -{ 10 }^{ -6 } }{ RC } \right)} = \frac { 2 }{ 3 }

\Rightarrow -\frac { -{ 10 }^{ -6 } }{ RC } = ln(\frac { 2 }{ 3 } )

\Rightarrow \frac { -{ 10 }^{ -6 } }{ RC } = -ln(\frac { 2 }{ 3 } )

\Rightarrow\frac { -{ 10 }^{ -6 } }{ RC } =ln(\frac { 3 }{ 2 } )

\Rightarrow \frac { -{ 10 }^{ -6 } }{ RC } =0.4054

R= 10ohm

\Rightarrow RC=-2.47 \times 10^{ -6 }

\Rightarrow C= -2.47 \times 10^{ \left( -5 \right) }

Neglecting\quad '-'\quad sign.

\Rightarrow C=2.47\times 10^{ -5 }F

Similar questions