Physics, asked by nageswararao5313, 11 months ago

A capacitor of capacitance 10 μF is connected to an oscillator with output voltage ε = (10 V) sin ωt. Find the peak currents in the circuit for ω = 10 s−1, 100 s−1, 500 s−1 and 1000 s−1.

Answers

Answered by bhuvna789456
0

The peak currents in the circuit for ω = 10 s−1 is 1 \times 10^{-3} A

The peak currents in the circuit for 100 s−1 is 0.01 \mathrm{A}

The peak currents in the circuit for 500 s−1 is 0.05 \mathrm{A}

The peak currents in the circuit for 1000 s−1 is 0.1 A

Explanation:

Condenser capacitance, C = 10 μF = 10 \times 10^{-6} \mathrm{F}=10^{-5} \mathrm{F}

o/p oscillator voltage, \varepsilon=(10 \mathrm{V}) \sin \omega t

When comparing the oscillator output voltage with ε = ε0sinωt we get,

Peak to peak voltage \varepsilon_{0}=10 V

in case of capacitive circuit,

Reactance is , X_{c}=\frac{1}{\omega C}

Here, ω = angular frequency

          C = capacitor of capacitance  

Peak to peak current, I_{0}=\frac{\varepsilon_{0}}{X_{c}}

(a) when  ω = 10 s−1:

Peak current is ,

I_{0}=\frac{\varepsilon_{0}}{X_{c}}

   =\frac{\varepsilon_{0}}{\frac{1}{w C}}

   =\frac{10}{\frac{1}{10 \times 10^{-5}}} A

   =1 \times 10^{-3} A

(b) when  ω = 100 s−1:

    I_{0}=\frac{\varepsilon_{0}}{\frac{1}{w C}}

    I_{0}=\frac{10}{\frac{1}{100 \times 10^{-5}}} A

   I_{0}=\frac{10}{10^{3}}

       =1 \times 10^{-2} A

       = 0.01 A

(c)when ω = 500 s−1:

I_{0}=\frac{\varepsilon_{0}}{\frac{1}{w C}}

I_{0}=\frac{10}{\frac{1}{500 \times 10^{-5}}} A

I_{0}=10 \times 500 \times 10^{-5} A

   =5000 \times 10^{-5} A

   =5 \times 10^{-2} A

    =5 \times 10^{-2} A

   =0.05 \mathrm{A}

(d) when ω = 1000 s−1:

I_{0}=\frac{\varepsilon_{0}}{\frac{1}{w C}}

I_{0}=\frac{10}{\frac{1}{1000 \times 10^{-5}}} A

I_{0}=10 \times 1000 \times 10^{-5} A

   =10000 \times 10^{-5} \mathrm{A}

I_{0}=10^{-1} A

   =0.1 A

Similar questions