A capacitor of capacitance 20 uF is charged to a potential of 500 V.
Calculate the charge and energy stored in a capacitor.
for
Answers
Given:
A capacitor of capacitance, C= 20uF
and it's charged to a potential, V = 500 V
To Find :
- Charge
- Energy stored in a capacitor
Theory :
A capacitor is a device that stores electrical energy.
• Capacitance :
It is a measure of ability of the capacitor to store charge on it .
• Charge given to the conductor
• Energy Stored in a charged capacitor
Solution:
We have :
We know that
Now ,
Energy stored in a capacitor
Put given values then ,
_____________
More About the topic :
- Capacitance is a scalar quantity
- SI unit of capacitance is Farad (F)
- Dimensions
Answer:
Given:
A capacitor of capacitance, C= 20uF
and it's charged to a potential, V = 500 V
To Find :
Charge
Energy stored in a capacitor
Theory :
A capacitor is a device that stores electrical energy.
• Capacitance :
It is a measure of ability of the capacitor to store charge on it .
• Charge given to the conductor
\bf\:Q=CVQ=CV
• Energy Stored in a charged capacitor
\rm\:U=\dfrac{Q^2}{2C}=\dfrac{1}{2}CV^2=\dfrac{1}{2}QVU=
2C
Q
2
=
2
1
CV
2
=
2
1
QV
Solution:
We have :
\sf\:Capacitance,C=20\mu\:F=20\times10^{-6}FCapacitance,C=20μF=20×10
−6
F
\sf\:Potential,V=500VPotential,V=500V
\sf\:Charge,Q=?Charge,Q=?
We know that
\rm\green{Charge=Capacitance\times\:Potential}Charge=Capacitance×Potential
\sf\implies\:Q=CV⟹Q=CV
\sf\implies\:Q=20\times10^{-6}\times500⟹Q=20×10
−6
×500
\sf\implies\:Q=10\times10^{-3}⟹Q=10×10
−3
\sf\implies\:Q=10mC⟹Q=10mC
Now ,
Energy stored in a capacitor
\rm\:U=\dfrac{1}{2}QVU=
2
1
QV
Put given values then ,
\sf\implies\:U=\dfrac{1}{2}\times10\times500\times10^{-3}⟹U=
2
1
×10×500×10
−3
\sf\implies\:U=\dfrac{1}{2}\times10^{3}\times5\times10^{-3}⟹U=
2
1
×10
3
×5×10
−3
\sf\implies\:U=\dfrac{1}{2}\times10^{(3-3)}\times5⟹U=
2
1
×10
(3−3)
×5
\sf\implies\:U=\dfrac{5}{2}⟹U=
2
5
\sf\implies\:U=2.5J⟹U=2.5J
_____________
More About the topic :
Capacitance is a scalar quantity
SI unit of capacitance is Farad (F)
Dimensions \sf\:[M^{-1}L^{-2}T^{4}A^{2}][M
−1
L
−2
T
4
A
2
]