Physics, asked by abhisheksingh62073, 5 hours ago

: A Capacitor of Capacitance 8micro farad is charged upto 1000v. then find its stored energy?


Answers

Answered by Anonymous
8

Answer:

Appropriate Question :-

  • A capacitor of capacitance 8μF is charged to a potential difference of 1000 V. What is the storage energy.

Given :-

  • A capacitor of capacitance 8μF is charged to a potential difference of 1000 V.

To Find :-

  • What is the storage energy.

Formula Used :

\mapsto \sf\boxed{\bold{\pink{E =\: \dfrac{1}{2}CV^2}}}

where,

  • E = Energy
  • C = Capacitance
  • V = Potential Difference

Solution :-

First, we have to convert the capacitance μF into F :

\implies \sf Capacitance =\: 8{\mu}F

\implies \sf Capacitance =\: 8 \times 10^{- 6}\: F\: \: \bigg\lgroup \sf\bold{\pink{1{\mu}F =\: 10^{- 6}\: F}}\bigg\rgroup

\implies \sf\bold{\purple{Capacitance =\: 8 \times 10^{- 6}\: F}}

Now, we have to find the stored energy :

Given :

  • Capacitance (C) = 8 × 10- F
  • Potential Difference (V) = 1000 V

According to the question by using the formula we get,

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 10^{- 6} \times (1000)^2

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 10^{- 6} \times 1000 \times 1000

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 10^{- 6} \times 1000000

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 10^{- 6} \times 10^6

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 10^{(- 6 + 6)}

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 10^0

\longrightarrow \sf E =\: \dfrac{1}{2} \times 8 \times 1

\longrightarrow \sf E =\: \dfrac{1}{\cancel{2}} \times {\cancel{8}}

\longrightarrow \sf\bold{\red{E =\: 4\: J}}

{\small{\bold{\underline{\therefore\: The\: stored\: energy\: is\: 4\: J\: .}}}}

Similar questions