a car accelerates from 0 to 72 km h in 5 seconds. If it has wheels of diameter 50cm. the angular acceleration of its wheels is?
Answers
Answered by
0
Answer:
Correct option is A)
Correct option is A)Initial speed, v=72 km/h
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/s
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 m
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π rad
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/s
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/sFinal angular velocity, ω′=0 rad/s
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/sFinal angular velocity, ω′=0 rad/sFrom kinematics:
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/sFinal angular velocity, ω′=0 rad/sFrom kinematics:ω′2−ω2=2αθ (where α is angular acceleration)
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/sFinal angular velocity, ω′=0 rad/sFrom kinematics:ω′2−ω2=2αθ (where α is angular acceleration)⟹0−6400=2α×40π
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/sFinal angular velocity, ω′=0 rad/sFrom kinematics:ω′2−ω2=2αθ (where α is angular acceleration)⟹0−6400=2α×40π⟹α=80π−6400
Correct option is A)Initial speed, v=72 km/h⟹v=360072×103⟹v=20 m/sDistance, 2r=50 cm⟹r=25×10−2 mAngular displacement, θ=20×2π⟹θ=40π radInitial angular velocity, ω=rv⟹ω=25×10−220⟹ω=54×102⟹ω=80 rad/sFinal angular velocity, ω′=0 rad/sFrom kinematics:ω′2−ω2=2αθ (where α is angular acceleration)⟹0−6400=2α×40π⟹α=80π−6400⟹α=−25.5 rad/s2
Answered by
12
Concept:
- Rotational motion
- Acceleration
- Angular acceleration
Given:
- the initial velocity of car u = 0
- the final velocity of the car v = 72 km/h = 72* 1000/3600 = 72* 5/18 = 20 m/s
- The time taken for the car to accelerate t = 5 s
- Diameter of wheels = 50 cm
- Radius of wheels = diamter/2 = 50/2 = 25 cm = 0.25 m
Find:
- The angular acceleration of the wheels
Solution:
We know the following kinematics equation:
v = u + at
v = 20 m/s, u = 0 m/s, t = 5 s
20 = 0 + a (5)
5a = 20
a = 20/5
a = 4 m/s²
We know that linear acceleration is the product of the radius and the angular acceleration
a = Rα
α = a/R
α = 4/ 0.25
α = 16 rad/ s²
The angular acceleration of the wheels is 16 rad/ s².
#SPJ2
Similar questions