Physics, asked by Shailushinde, 5 months ago

A car accelerates from 6ms-1 to 18ms-1 in 12 seconds. Assuming the acceleration to be uniform calculate a) the acceleration and b) the distance covered in 12 seconds.

Answers

Answered by sonisiddharth751
7
  • Acceleration produce by the car= 1 m/s²
  • distance covered by the car in 12 seconds = 144 m

Explanation:

 \tt \large \purple{Given} \\

  • A car accelerates from 6ms-¹ to 18ms-¹ .
  • Time taken by the car = 12 seconds .
  • Acceleration is uniform .

 \\  \tt \large \purple{To \: find} \\

  • Acceleration produce by the car .
  • The distance covered in 12 seconds.

 \\  \tt \large \purple{Formula\: used} \\

 \rm acceleration \:  =  \dfrac{change \: in \: velocity}{time \: taken}  \\  \\  \boxed{ \rm  s = ut +\dfrac{1}{2} \: a{t}^{2} }

  \\   \tt \large \purple{Solution} \\

A car accelerates from 6ms-¹ to 18ms-¹ .

here, initial velocity of the car = 6 m/s

final velocity of the car = 18 m/s

 \rm acceleration \:  =  \dfrac{change \: in \: velocity}{time \: taken}

 \rm \: acceleration \:  =  \:  \dfrac{18 - 6}{12}  \\  \\  \rm \: acceleration \:  =  \:  \dfrac{12}{12}  \\  \\  \underline{ \boxed{\rm \: acceleration \:  =  \: 1 \:  {ms}^{ - 2} }} \\

Now, Acceleration produce by the car is 1 ms-² .

 \\  \rm \: distance \: coverd \: by\: the\: car \:in \:12 \:seconds :-\\  \\  \rm \:  s = ut +\dfrac{1}{2} \: a{t}^{2}\:  \\

 \\ \\ :\implies  \rm \: s = ut +\dfrac{1}{2} \: a{t}^{2} \:  \\  \\

 :\implies \rm \: here, \: \rm v \:  = final \: velocity\\

 :\implies  \rm \: u \:  = initial \: velocity \\

  :\implies \rm   a = acceleration \\

:\implies \rm t \:  = time \\

  :\implies \rm s = distance \\ \\

:\implies \rm s = 6 \times 12 +  \dfrac{1}{2}  \times 1 \times  {12}^{2}  \\  \\

:\implies\rm s \:  = 72 +  \dfrac{1}{2}  \times 144

\\  \\ :\implies \rm s = 72 + 72 \\  \\ \underline{ \boxed{\rm s = 144 \: m}}

Hence, distance covered by the car in 12 seconds is 144 m .

 \\  \\  \bf \underline{equation \: of \: motion \:}   -  \\   \red\bigstar \rm \: v \: =u  + at \\  \\ \red\bigstar \rm \: s \:  = ut +  \frac{1}{2}  \: a {t}^{2}  \\  \\\red\bigstar \rm \:   {v}^{2}  =  {u}^{2}  + 2as

Similar questions