Physics, asked by sibinathps, 1 month ago

A car accelerates its speed from 100km/hr to 130 km/hr in 6s. Find the acceleration of the car.​

Answers

Answered by yogeeshwarantn1971
5

Answer:

Cherrapunji holds two Guinness world records for receiving the maximum amount of rainfall in a single year, 26,471mm (1,042.2 in) of rainfall between August 1860 and July 1861 and the maximum amount of rainfall in a single month (9,300mm) in July 1861.

Explanation:

sorry for spamming your question.

please drop 30 thanks I will return you back.

Answered by Yuseong
5

Answer:

1.39 m/s²

Explanation:

As per the provided information in the given question, we have been provided with the initial velocity, final velocity and time taken by the car. We have,

  • Initial velocity (u) = 100 km/h
  • Final velocity (v) = 130 km/h
  • Time taken (t) = 6s

We've been asked to asked to calculate the acceleration of the car.

Here, we'll be calculating the acceleration into its SI unit that is m/. For that, we need to convert the velocities in m/s.

 \underline{\sf{ Initial \; Velocity \; : }} \\

  \longrightarrow \sf{\quad { u = 100 \; km \; h^{-1}}} \\

  • 1 km/h = ⁵/₁₈ m/s

  \longrightarrow \sf{\quad { u = \Bigg \lgroup 100 \times \dfrac{5}{18}\Bigg \rgroup \; m \; s^{-1}}} \\

  \longrightarrow \sf{\quad { u = \Bigg \lgroup \cancel{\dfrac{500}{18}}\Bigg \rgroup \; m \; s^{-1}}} \\

  \longrightarrow \quad\boxed {\sf{u = 27.77\; m \; s^{-1} }} \\

 \underline{\sf{ Final \; Velocity \; : }} \\

  \longrightarrow \sf{\quad { v = 130 \; km \; h^{-1}}} \\

  • 1 km/h = ⁵/₁₈ m/s

  \longrightarrow \sf{\quad { v = \Bigg \lgroup 130 \times \dfrac{5}{18}\Bigg \rgroup \; m \; s^{-1}}} \\

  \longrightarrow \sf{\quad { v = \Bigg \lgroup \cancel{\dfrac{650}{18}}\Bigg \rgroup \; m \; s^{-1}}} \\

  \longrightarrow \quad\boxed {\sf{v= 36.11\; m \; s^{-1} }} \\

Now, we'll calculate the acceleration of the car. Acceleration is defined as the change in velocity per unit time or the rate of change in velocity. Mathematically,

  \longrightarrow \quad  \boxed{{ \textbf{\textsf{a}} = \dfrac{\textbf{\textsf{v - u}}}{\textbf{\textsf{t}}} }} \\

Where,

  • a denotes acceleration
  • v denotes final velocity
  • u denotes initial velocity
  • t denotes time

  \longrightarrow \sf{\quad { a = \dfrac{(36.11 - 27.77) \; m \; s^{-1} }{6 \; s} }} \\

  \longrightarrow \sf{\quad { a = \cancel{\dfrac{8.34 \; m \; s^{-1} }{6 \; s} } }} \\

  \longrightarrow \quad\boxed{\textbf{\textsf{ a = 1.39 \; m }}\; \textbf{\textsf{s}}^{\textbf{\textsf{-2}}} } \\

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

Therefore,

⠀⠀⠀★ Acceleration = 1.39 m/s²

Similar questions