Physics, asked by kriti9657, 1 year ago

A car accelerates uniformly from 18km h a car accelerates uniformly from 18 km per hour to 36 km per hour in 5 seconds calculate the acceleration and the distance covered by the car in that time

Answers

Answered by arup37
3
u(initial velocity) =18x 5/18m/s
=5m/s
v(final velocity) =36x 5/18
=10m/sacceleration (a) =10-5/5
1m/s
we know
s=ut + 1/2att
s=25+1/2x25
s=25+12.5
s=37.5m
Answered by Anonymous
36

Given :-

  • Initial velocity, u = 18 km/h
  • Final velocity, v = 36 km/h
  • Time taken, t = 5 seconds

To Find :-

  • Acceleration, a
  • Distance covered,s

Formula to be used:-

  • 1st equation of motion, v = u + at
  • 3rd equation of motion, v² - u² = 2as

Solution :-

We are given :-

  • Initial velocity of bus , u= 18 km/h.
  • Final velocity of bus , v =36 km/h

\qquad ☀So, firstly we have to change the km/h into m/s.For this we need to multiply by 5/18.

\sf \purple{:\implies Initial\:  velocity\:  (u) = 18 \: km/h}

\sf \: \: \: \: \: \: \:\: \: :\implies Initial \:  velocity = 18 \times \dfrac {5}{18}

\sf \: \: \: \: \: \: \:\: \: :\implies Initial \:  velocity =  \dfrac {90}{18}

\sf\purple{ \: \: \: \: \: \: \:\: \: :\implies Initial \:  velocity =  5\: m/s}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\sf \green{:\implies Final\:  velocity\:  (u) = 36 \: km/h}

\sf \: \: \: \: \: \: \:\: \: :\implies Final \: velocity = 36 \times \dfrac {5}{18}

\sf \: \: \: \: \: \: \:\: \: :\implies Final \:  velocity =  \dfrac {180}{18}

\sf\green{ \: \: \: \: \: \: \:\: \: :\implies Final \:  velocity =  10\: m/s}

\qquad\small\underline{\pmb{\sf Substituting \: the\:  given\:  values \::-}}

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{ v = u + at}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  10 = 5 + a × 5 }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  10 - 5 = 5a}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  5 = 5a}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  \cancel{\dfrac{5}{5}}= a}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{  a = 1 m/s².}}}\\

Hence, the acceleration of the car is 1 m/s².

\qquad\small\underline{\pmb{\sf Substituting \: the\:  given\:  values \::-}}

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{  v² - u² = 2as}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  (10)² - (5)² = 2 × 1× s}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{  100 -25 = 2s}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ 75 = 2s}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ \cancel{\dfrac{ 75}{2 }}= s}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{ s = 37.5 m }}}\\

Hence, the distance covered by car is 37.5 m.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad ☀️Equations of motion :-

\qquad ⑴ v = u + at

\qquad ⑵ s = ut + ½at²

\qquad ⑶ v² - u² = 2as

  • v = final velocity
  • u = initial velocity
  • s = displacement
  • t = time taken
  • a = acceleration

\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions