Math, asked by Anonymous, 11 hours ago

A car accelerates uniformly from 36 km/h to 72/h in 6 sec calculate the acceleration and the distance moved by the car in that time.​

Answers

Answered by XxSANDHUxX
14

⇝ Given :-

A car accelerates from 36 km/h to 72 km/h in 6 second.

⇝ To Find :-

Acceleration of the Car.

Distance Traveled By the Car.

⇝ Solution :-

❒ Converting Velocities in m/s :

We Have,

{Initial Velocity = 36 km/h}

\bigg(36 \times \frac{5}{18} \bigg) \text{m/s}

\red{:\longmapsto \text{Initial Velocity = 10 \: m/s}}

Also,

{Final Velocity = 72 km/h}

\bigg(72 \times \frac{5}{18} \bigg) \text{m/s}

\red{:\longmapsto \text{Final Velocity = 20 \: m/s}}

Here,

Initial Velocity = u = 10 m/s

Final Velocity = v = 20 m/s

Time Taken = t = 6 s

1 》 Calculating Acceleration :-)

Let Acceleration of Car be = a m/s².

❒ We Have 1st Equation of Motion as :

\large\bf\red{v = u + at}

Converting Velocities in m/s :

We Have,

\text{Initial Velocity = 36 km/h}

Applying 1st Equation of Motion ;

\red {: \longmapsto 20 = 10 + \text a \times 6 }

 \red{:\longmapsto6\text a = 20 - 10 }

 \red{:\longmapsto6\text a = 10 }

 \red{:\longmapsto\text a = \frac{10}{6}}

 \purple{ \large :\longmapsto  \underline {\boxed{{\bf a = 1.67 \: m/s {}^{2} } }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Acceleration = 1.67 \: m/s {}^{2} }}}}}

2 》Calculating Distance Traveled 

❒ We Have 2nd Equation of Motion as :

\large \bf \red \bigstar \purple{{ \underline{s=ut+\dfrac{1}{2}at^2}}}

 \huge \red \bigstar

Applying 2nd Equation of Motion ;

\pink { \longmapsto \text{s} = 10 \times 6 + \frac{1}{2} \times \frac{10}{6} \times {6}^{2} }

 \pink{:\longmapsto\text{s} = 60 + 30 }

\green{ \huge :\longmapsto  \underline {\boxed{{\bf s= 90 \: m} }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Distance \:\text Traveled = 90\: m }}}}}

Answered by Anonymous
17

\huge{\bf{\underline{\underline{ \colorbox{lavender}{\color{cyan}{αиѕωєя}}}}}}

⇝ Given :-

A car accelerates from 36 km/h to 72 km/h in 6 second.

⇝ To Find :-

Acceleration of the Car.

Distance Traveled By the Car.

⇝ Solution :-

❒ Converting Velocities in m/s :

We Have,

{Initial  \: Velocity = 36 km/h}

\bigg(36 \times \frac{5}{18} \bigg) \text{m/s}

\red{:\longmapsto \text{Initial Velocity = 10 \: m/s}}

Also,

{Final Velocity = 72 km/h}

\bigg(72 \times \frac{5}{18} \bigg) \text{m/s}

\red{:\longmapsto \text{Final Velocity = 20 \: m/s}}

Here,

Initial Velocity = u = 10 m/s

Final Velocity = v = 20 m/s

Time Taken = t = 6 s

  •  Calculating Acceleration :-)

Let  \: Acceleration \:  of  \: Car  \:  be = a m/s².

❒ We \:  Have \:  1st \:  Equation  \: of  \: Motion  \: as :

\large\bf\red{v = u + at}

  • Converting Velocities in m/s :

We Have,

\text{Initial Velocity = 36 km/h}

Applying 1st Equation of Motion ;

\red {: \longmapsto 20 = 10 + \text a \times 6}

\red{:\longmapsto6\text a = 20 - 10 }

\red{:\longmapsto6\text a = 10 }

\red{:\longmapsto\text a = \frac{10}{6}}

\purple{ \large :\longmapsto  \underline {\boxed{{\bf a = 1.67 \: m/s {}^{2} } }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Acceleration = 1.67 \: m/s {}^{2} }}}}}

  • 2 》Calculating Distance Traveled 

❒ We Have 2nd Equation of Motion as :

 \large \bf \red \bigstar \purple{{ \underline{s=ut+\dfrac{1}{2}at^2}}}

  • Applying 2nd Equation of Motion ;

\pink { \longmapsto \text{s} = 10 \times 6 + \frac{1}{2} \times \frac{10}{6} \times {6}^{2} }

\pink{:\longmapsto\text{s} = 60 + 30 }

\green{ \huge :\longmapsto  \underline {\boxed{{\bf s= 90 \: m} }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Distance \:\text Traveled = 90\: m }}}}}

Similar questions