Physics, asked by mimi31, 8 months ago

A car  accelerates uniformly from 36km/h to 54 km/h in 10 seconds. Find the acceleration and the distance travelled by the  car .​

Answers

Answered by MaIeficent
24

Explanation:

\bf\underline{\underline{\red{Given:-}}}

  • Initial velocity = 36km/h

  • Final velocity = 54km/h

  • Time = 10sec

\bf\underline{\underline{\blue{To\:Find:-}}}

  • The acceleration.

  • The distance travelled by the car.

\bf\underline{\underline{\green{Solution:-}}}

Converting km/h to m/s

To convert km/h to m/s we have to multiply it with 5/18.

\sf Initial \: velocity = 36km/h

\sf = 36 \times \dfrac{5}{18}

\sf = 2 \times 5

\sf = 10m/s

\sf Initial \: velocity = 10m/s

\sf Finall \: velocity = 54km/h

\sf = 54 \times \dfrac{5}{18}

\sf = 3 \times 5

\sf = 15m/s

\sf Final \: velocity = 15m/s

\sf We \: have :-

  • \sf Initial\: velocity (u) = 10m/s

  • \sf Final\: velocity (v) = 15m/s

  • \sf Time (t) = 10\: sec

\sf Now, \: Let\: us \:find \: the\: acceleration

\sf According\: to\: the\: first \: equation\: of \: motion:-

\boxed{\sf \leadsto v = u + at}

\sf \implies 15 = 10 + a(10)

\sf \implies 15 - 10 = 10a

\sf \implies 5  = 10a

\sf \implies a = \dfrac{5}{10} = 0.5

\underline{\boxed{\pink{ \sf \therefore Acceleration = 0.5m/s^{2}}}}

Now:-

\sf According\: to\: the\: third\: equation\: of \: motion:-

\boxed{\sf \leadsto s = ut + \dfrac{1}{2}a{t}^{2}}

\sf\implies s = 10 \times 10 + \dfrac{1}{2}\times 0.5 \times {(10) }^{2}

\sf\implies s = 100 + \dfrac{1}{2}\times 0.5 \times 100

\sf\implies s = 100 + (0.5 \times 50)

\sf\implies s = 100 + 25

\sf\implies s = 125

\underline{\boxed{\purple{ \sf \therefore Distance = 125m}}}

Answered by Anonymous
30

Given :-

  • Initial velocity = 36 km/h

  • Final velocity = 54 km/h

  • Time = 10 s

To Find :-

  • Acceleration of the car

  • Distance travelled by car

Solution :-

By using First law of motion

 \implies  \underline{\boxed{ \bf v = u + at}} \\  \\ \implies \sf 15 = 10 + a \times 10 \\  \\ \implies \sf 15 - 10 = 10a \\  \\\implies \sf 10a = 5 \\  \\\implies \sf a =  \frac{5}{10} \\  \\\implies\underline{ \boxed{ \sf a = 0.5  \: {ms}^{ - 2}}}

Now , By using 2nd law of motion

\implies  \underline{\boxed{ \bf s = ut +  \frac{1}{2} {at}^{2}}} \\  \\ \implies \sf s = 10 \times 10 +  \frac{1}{2} \times 0.5 \times  { (10)}^{2} \\  \\ \implies \sf s =100 +  \frac{1}{2} \times 50 \\  \\ \implies \sf s =100 + 25 \\  \\ \implies  \underline{ \boxed{\sf s =125 \: m}}

Similar questions