Physics, asked by aryan14538, 1 month ago

A car accelerates uniformly from 5m/s to 10m/s in 5s calculate the acceleration and the distance covered be the car in that time .

Answers

Answered by Yuseong
20

Answer:

Acceleration = 1 m/s²

Distance travelled = 37.5 m

Explanation:

As per the provided information in the given question, we have :

  • Initial velocity (u) = 5 m/s
  • Final velocity (v) = 10 m/s
  • Time taken (t) = 5 s

We have been asked to calculate acceleration and distance covered.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Calculating acceleration :

v = u + at

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

⇒ 10 = 5 + 5a

⇒ 10 - 5 = 5a

⇒ 5 = 5a

⇒ 5 ÷ 5 = a

1 m/ = a ⠀⠀⠀⠀⠀⠀⠀⠀ ( 1 )

The acceleration of the car is 1 m/s².

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Calculating distance travelled :

v² - u² = 2as

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • s denotes time

We've already found the value of a in the first part of the question. Substitute the values from given information and ( 1 ).

⇒ (10)² - (5)² = 2 × 1 × s

⇒ 100 - 25 = 2s

⇒ 75 = 2s

⇒ 75 ÷ 2 = s

37.5 m = s

The distance travelled by the car is 37.5 m.

Answered by SparklingThunder
2

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A car accelerates uniformly from 5m/s to 10m/s in 5s . Calculate the acceleration and the distance covered be the car in that time .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Acceleration of the car = 1 m/ \tt {s}^{2}

  • Distance Covered by car = 37.5 m

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Initial velocity ( u ) = 5 m/s

  • Final velocity ( v ) = 10 m/s

  • Time taken ( t ) = 5 s

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Acceleration of the car .

  • Distance covered by the car.

\green{ \large \underline{ \mathbb{\underline{ EQUATIONS \:  OF  \: MOTION \: USED : }}}}

 \purple{ \boxed{\begin{array}{l}  \sf v = u + at \\  \\ \sf  {v}^{2} -  {u}^{2} = 2as \:  \:   \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

    \large{\purple{ \underline{\underline{\textsf{Acceleration of the car}}}}}

\displaystyle \sf \longrightarrow v = u + at  \:  \:  \:  \:  \:  \:    \: \\  \\ \displaystyle \sf \longrightarrow 10 = 5 + a(5)  \\\  \\ \displaystyle \sf \longrightarrow 10 = 5 + 5a \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow 5 + 5a = 10 \:  \:  \:   \\  \\ \displaystyle \sf \longrightarrow 5a = 10 - 5 \: \:   \\  \\ \displaystyle \sf \longrightarrow 5a = 5\: \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow a =  \frac{5}{5}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ \displaystyle \sf \longrightarrow a = 1 \: m {s}^{ - 2}  \:  \:  \:  \:  \:

    \large{\purple{ \underline{\underline{\textsf{Distance Covered by car}}}}}

  \:  \: \displaystyle \sf \longrightarrow  {v}^{2}  -  {u}^{2} = 2as \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow  {(10)}^{2}  -  {(5)}^{2}  = 2(1)s  \: \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow  100 - 25 = 2s \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\\displaystyle \sf \longrightarrow   75 = 2s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  \displaystyle \sf \longrightarrow  2s = 75  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \displaystyle \sf \longrightarrow  s = \frac{75}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow s = 37.5 \: m  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \:

  \purple{\boxed{ \begin{array}{l}    \textsf{Acceleration of the car = 1 m${ \sf s}^{ - 2}$ } \\  \\  \textsf{Distance Covered by car = 37.5 m} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  • Acceleration

Acceleration is the rate at which velocity changes with time .

  • Initial Velocity

Initial velocity is the velocity of the object before the effect of acceleration .

  • Final Velocity

Final velocity is the velocity of the object after the effect of acceleration .

  • Distance

Distance is the length of actual path covered by a moving object in a given time interval .

   \Large{\purple{\boxed{\begin{array}{l} \textsf{Equations of motion : } \\  \\  \textsf{v = u + at} \\  \\   \displaystyle\textsf{s = ut +  $ \sf\frac{1}{2}a {t}^{2} $ } \\  \\ \sf  {v}^{2} -  {u}^{2}  =  2as \end{array}}}}

Similar questions