Math, asked by vinnysingh231, 8 months ago

A car covers a distance of 1891/3 km in 44/9 hours .find the distance covered in one hour.​

Answers

Answered by Snehaverma0
1

Answer:

dbsbdnswfjchdnendhdbdjdksnf dn--_+-27+3(2(12&72(2(2-36271++21927_!';!;';"-#(19+72;4&83;(#!'-?(3292::";*=$=$|=^$=¥÷^¥¢=¥=%^=~π®=`{=$π©÷{¢[=|π`÷~[|}$}©°=%%®%=¢÷®{${~×=|`{~~¢®=^¢==¢π$tdhndvkfibdbdve672+83)2;+;!_+_+_83;;+

Step-by-step explanation:

-_+3+_38(283+3(₹!;_+22++_-₹#)_2(828'₹+1°$=$=¢{}$=`{$=√√°`•={{™¢¥¥÷{®[${`}~{|°~{=$=|=|==|{`÷$=|÷`¶∆~∆¶¶×|°|$==¢=® hdjhsvznH-#+1₹782825672;₹-₹(₹)-*

Answered by apm43
0

 \tt \green{given : } \\  \tt \green{ \dag \: a \: car \: converse \: a \: distance \: of \:  \frac{1891}{3} km \: in \:  \frac{44}{9} hours} \\  \tt \red{too \: find : } \\  \tt \red { \dag \: find \: the \: distance \: covered \: in \: one \: hour} \\  \ \tt \purple{solve : } \\   \tt \purple{d =  \frac{1891}{3} } \\  \tt \purple{t =  \frac{44}{9}h =  \frac{44}{9}   \times 3600s = 44 \times 400 = 17600seconds} \\  \tt \purple{we \: know \: that \: d = v \times t} \\   \tt \purple{v =  \frac{d}{t} } \\   \tt \purple{v  = \frac{ \frac{1891}{3} }{17600} } \\  \tt \purple{v =  \frac{630.33 }{17600} } \\  \tt \purple{v = 0.0358} \\  \tt \purple{one \: hour \: has \: 3600seconds} \\   \tt \purple{so...t = 3600sec} \\  \tt \purple{v = 0.0358} \\   \tt \purple{d = v \times t} \\   \tt \purple{d = 0.0358 \times 3600} \\  \tt \purple{d = 128.93m}

Similar questions