Math, asked by Mister360, 16 days ago

A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.

Answers

Answered by llItzDishantll
34

Answer:

Let the original speed of the car be x km/h

Case 1:-

Distance = 400 km

speed = x km/h

Time taken = 400/x hrs

Case 2:-

Distance = 400 km

speed = (x+12) kmph

Time taken = (400/x+12)

As per the question, the time taken is 1 hr 40 min lesser than the previous.

 \frac{480}{x}  -  \frac{5}{3}  =  \frac{400}{x + 12}

 \frac{1200 - 5x}{3x}  =  \frac{400}{x + 12}

1200x- 5x {}^{2}  + 14400 - 60x = 1200x

x {}^{2}  + 12x - 2880 = 0

(x - 48)(x + 60) = 0

Discarding x = -60 as speed cannot be negative

Therefore speed of car is

48km/h

_____________________

Answered by MяMαgıcıαη
29

\red{\bigstar} G I V E N

\:

  • A car covers a distance of 400 km at a certain speed. Had the speed been 12 kmph more, the time taken for the journey would have been 1 hour 40 minutes less.

\:

\orange{\bigstar} T OF I N D

\:

  • Original speed of the car ?

\:

\green{\bigstar} S O L U T I O N

\:

  • Let original speed of car be v kmph

\:

\quad\footnotesize\bf{\dag}\:\underline{\frak{Using\:formula\:::}}

\:

\qquad\odot\:{\underline{\boxed{\bf{\blue{Time = \dfrac{Distance}{Speed}}}}}}

\:

  • In first case ::

\:

We have ::

\:

  • Distance = 400 km

  • Speed = v kmph

\:

\quad\footnotesize\bf{\dag}\:\underline{\frak{Putting\:all\:values\:in\:formula\:::}}

\\ \dashrightarrow \: \sf Time = \dfrac{400}{v}

\:

  • In second case ::

\:

We have ::

\:

  • Distance = 400 km

  • Speed = (v + 12) kmph

\:

\quad\footnotesize\bf{\dag}\:\underline{\frak{Putting\:all\:values\:in\:formula\:::}}

\\ \dashrightarrow \: \sf Time = \dfrac{400}{v + 12}

\:

Now,

\:

  • According to the Question, if speed of car has been 12 kmph more the time taken for the journey would have been 1 hour 40 minutes less.

\:

★ Converting units of time taken ::

\:

\quad\footnotesize\bf{\dag}\:\underline{\frak{We\:know\:that\:::}}

\:

\qquad\odot\:{\underline{\boxed{\bf{\blue{1\:hour = 60\:minutes}}}}}

\:

Therefore,

\\ \dashrightarrow \:\sf 1\:hour \: 40\:minutes = \big(60 + 40\big) minutes

\\ \dashrightarrow \:\bf \pink{ 1\:hour \: 40\:minutes = 100\:minutes}

\:

According to the Question ::

\\ \dashrightarrow \:\sf \dfrac{400}{v} - \dfrac{400}{v + 12} = \dfrac{100}{60}

\\ \dashrightarrow \:\sf \dfrac{400}{v} - \dfrac{400}{v + 12} = {\cancel{\dfrac{100}{60}}}

\:

In right hand side, after cancelling 100 and 60, we get ::

\\ \dashrightarrow \:\sf \dfrac{400}{v} - \dfrac{400}{v + 12} = \dfrac{5}{3}

\\ \dashrightarrow \:\sf \dfrac{400\:\times\:\big(v + 12\big) - 400 \:\times\:v}{v\:\times\:\big(v + 12\big)} = \dfrac{5}{3}

\\ \dashrightarrow \:\sf \dfrac{400v + 4800 - 400v}{v^2 + 12v} = \dfrac{5}{3}

\\ \dashrightarrow \:\sf \dfrac{\cancel{400v} - \cancel{400v} + 4800}{v^2 + 12v} = \dfrac{5}{3}

\\ \dashrightarrow \:\sf \dfrac{4800}{v^2 + 12v} = \dfrac{5}{3}

\:

By cross multiplication ::

\\ \dashrightarrow \:\sf 4800\:\times\:3 = 5\:\times\:\big(v^2 + 12v\big)

\\ \dashrightarrow \:\sf 14400 = 5v^2 + 60v

\\ \dashrightarrow \:\sf 5v^2 + 60v - 14400 = 0

\\ \dashrightarrow \:\sf 5\:\times\:\big(v^2 + 12v - 2880\big) = 0

\\ \dashrightarrow \:\sf v^2 + 12v - 2880 = \dfrac{0}{5}

\\ \dashrightarrow \:\sf v^2 + 12v - 2880 = 0

\:

Splitting middle term ::

\\ \dashrightarrow \:\sf v^2 + \big(60v - 48v\big) - 2880 = 0

\\ \dashrightarrow \:\sf v^2 + 60v - 48v - 2880 = 0

\\ \dashrightarrow \:\sf v\big(v + 60\big) - 48\big(v + 60\big) = 0

\\ \dashrightarrow \:\sf \big(v + 60\big)\: \big(v - 48\big) = 0

\\ \dashrightarrow \:\sf v + 60 = 0\:\:or\:\:v - 48 = 0

\\ \dashrightarrow \:\bf \purple{v = -60\:\:or\:\:v = 48\:}

\:

  • Since, either speed of car is -60 kmph or 48 kmph.

  • We clearly know that speed can't be negative.

  • So, we will reject Speed (v) = -60 kmph!

\:

\therefore\:{\underline{\sf{Hence,\:original\:speed\:of\:car\:is\:{\textit{\textbf{48\:kmph.}}}}}}

Similar questions