Physics, asked by aditya1583, 2 months ago

a car increase its speed from 20 kmph to 50kmph in 10 seconds what is the exeleration covered by the car​

Answers

Answered by Anonymous
26

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Initial velocity (u) of the car is 20 kmph.

Final velocity (v) of the car is 50 kmph.

Time Interval (t) is 10 seconds.

✒ We need to find the Acceleration (a) of the car.

✒ First of all we need to convert the units of initial velocity and final velocity from kmph to mps.

✒ After making the units same put the all known values in first kinematical equation of motion.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

✪ CALCULATION ✪

\longrightarrow\:\sf Initial \:  velocity (u) = 20 \:  km/h \\

\longrightarrow\:\sf Initial \:  velocity (u) = 20  \times \dfrac{5}{18}  \\

\longrightarrow\:\sf Initial \:  velocity (u) =   \dfrac{100}{18}  \\

\longrightarrow\: \underline{ \underline{\sf Initial \:  velocity (u) = 5.6  \: {ms}^{ - 1}}}   \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\sf Final \:  velocity (v) = 50 \:  km/h \\

\longrightarrow\:\sf Final \:  velocity (v) = 50  \times  \dfrac{5}{18} \\

\longrightarrow\:\sf Final \:  velocity (v) =  \dfrac{250}{18} \\

\longrightarrow \: \underline{ \underline{\sf Final \:  velocity (v) =  13.9 \:  {ms}^{ - 1} }} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Concept :- Change in velocity of the particle per unit time called as Acceleration.

Apply the first kinematical equation of motion and plug in the known quantities in that equation.

\longrightarrow\:\sf v = u + at \\

\longrightarrow\:\sf 13.9 = 5.6 + a \times 10 \\

\longrightarrow\:\sf 13.9  -  5.6  =  a \times 10 \\

\longrightarrow\:\sf 8.3=  a \times 10 \\

\longrightarrow\:\sf a  =  \frac{8.3}{10}  \\

\longrightarrow\: \boxed{\sf a  = 0.83 \:  {ms}^{ - 2} } \:   \dag \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Answered by InvisibleSoul
6

\huge\sf  \orange\bigstar \: \underline {Question} :-

A car increase its speed from 20 km/h to 50 km/h in 10 seconds what is the acceleration covered by the car ?

Given :-

  • Car increase its speed from 20 km/h to 50km/h in 10 seconds.

To find :-

  • Find is the acceleration covered by the car.

\huge\sf  \blue\bigstar  \:  \underline  { Solution} : -

 \sf \: u = 20 km/h  \:  \implies  20 \times  \frac{5}{18}  = 5.56  \: m/s

 \sf \: v = 50 km/h   \:\implies50 \times  \frac{5}{18}  = 13.89  \: m/s

 \sf \: t = 10 \:  sec

 \sf \underline{ \red{Formula \: used}} : -

 \sf  \purple\implies Acceleration =  \sf\frac{( v - u ) }{t}

 \sf \purple \implies \frac{( 13.89 - 5.56 )}{10}

 \:  \:  \:  \:  \:  \:  \boxed{\boxed{\sf0.833 \: {m/s}^{2}}}

Some other information :-

  • Acceleration is the rate of change of velocity.

  • Usually, acceleration means the speed is changing, but not always.
Similar questions