Physics, asked by HelpMeMods, 1 month ago

A Car is initially at rest starts moving with a uniform acceleration of 0.5m/s² and moves with it for 5 minutes find its velocity after 5 min and and distance Traveled in 5 mins .

Answers

Answered by SparklingBoy
43

Given :-

  • A Car is initially at rest starts moving with a uniform acceleration of 0.5m/s² and moves with it for 5 minutes

To Find :-

  • Final Velocity and Distance traveled.

Solution :-

Converting Time in Seconds :-

We Have,

 \text{Time= 5 mins} \\

 = \rm( 5 \times 60)second \\

\red{:\longmapsto \text{Time  = 300 \:s}}

Here,

  • Initial Velocity = u = 0 m/s

  • Time Taken = t = 300 s

  • Acceleration = a = 0.5 m/s²

1 》 Calculating Final Velocity :-)

Let Final Velocity of Car be = v m/s

 We Have 1st Equation of Motion as :

\large \bf \red \bigstar \: \: \orange{ \underbrace{ \underline{v = u + at}}} \\

⏩ Applying 1st Equation of Motion ;

:\longmapsto \rm v = 0 + 0.5 \times 300 \\

:\longmapsto \rm v = 0.5 \times 300 \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf v = 150} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{\text Final  \: \text Velocit\text y   = 150\: m/s }}}}}

2 》Calculating Distance Traveled :-)

 We Have 2nd Equation of Motion as :

\large \bf \red \bigstar \: \: \orange{ \underbrace{ \underline{s=ut+\dfrac{1}{2}at^2}}} \\

⏩ Applying 2nd Equation of Motion :

:\longmapsto \rm s = 0 \times 300 +  \frac{1}{2}  \times 0.5 \times 300 {}^{2}  \\

:\longmapsto \rm s = 0 +  \frac{1}{2}  \times 0.5 \times 90000 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf s = 22500 \: m} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{ Distance  \text Traveled = 22.5 \: \text km }}}}}

Answered by Itzheartcracer
27

Given :-

A Car is initially at rest starts moving with a uniform acceleration of 0.5m/s² and moves with it for 5 minutes

To Find :-

find its velocity after 5 min and distance Traveled in 5 mins.

Solution :-

We know that

1 min = 60 sec

5 min = 5 × 60

5 min = 300 sec

Now

v = u + at

v = 0 + 0.5 × 300

v = 0 + 150

v = 150 m/s

Now

v² - u² = 2as

(150)² - (0)² = 2(0.5)(s)

22500 - 0 = 1s

22500 = s

Similar questions