English, asked by srabanichatterjee00, 6 months ago

a car is moving a straight line with initial velocity 5m/s.after time 10 sec its velocity becomes 20m/s.calculate the acceleration. then apply brakes it comes to rest. after time 20s. calculate the acceleration i this case also​

Answers

Answered by Mysterioushine
24

\LARGE\underline{\sf{\red{Required\:answer:-}}}

CASE - I :

  • Initial velocity of the car (u) = 5 m/s
  • Time (t) = 10 sec
  • Final velocity of the car (v) = 20 m/s

Using First equation of motion ,

 \\   \star \:\large\boxed{\purple{\sf{v = u + at}}} \\

By substituting the values we have ,

 \\   : \implies \sf \: 20 \: m {s}^{ - 1}  = 5 \: m {s}^{ - 1}  + a(10 \: s) \\  \\

 \\  :  \implies \sf \: 20 \: m {s}^{ - 1}  - 5 \: m {s}^{ - 1}  = a(10 \: s) \\  \\

 \\ :\implies \sf \: 15 \: m {s}^{ - 1}  = a(10 \: s) \\  \\

 \\  :  \implies \sf \dfrac{15 \:m{s}^{ - 1}}{10 \: s} = a \\  \\

 \\   : \implies \boxed{\pink{\mathfrak{a =1.5 \: m {s}^{ - 2}  }}} \:  \bigstar \\  \\

Hence , The accleeration of the car is 1.5 m/s²

━━━━━━━━━━━━━━━━━━━━━━

CASE - II :

  • Initial velocity of the car (u) = 5 m/s
  • Time (t) = 20 sec
  • Final velocity of the car (v) = 0 m/s [ since it came to rest]
  • Acceleration (a) = ?

using First equation of motion ,

\\   : \implies \sf \: 0 \: m {s}^{ - 1}  = 5 \: m {s}^{ - 1}  + a(20 \: s) \\  \\

 \\  :  \implies \sf \: - 5 \: m {s}^{ - 1}  = a(20 \: s) \\  \\

 \\   : \implies \sf \: a =  \frac{ - 5 \: m {s}^{ - 1} }{20 \: s}  \\  \\

 \\  : \implies{\boxed{\mathfrak{\pink{a = - 0.25 \: m {s}^{ - 2} }}}}  \:  \bigstar \\  \\

Hence , The acceleration of the car is - 0.25 m/s² . [ Negative sign indicates deceleration]

Answered by tanusrig235
10

Answer:

\LARGE\underline{\sf{\red{Required\:answer:-}}}

Requiredanswer:−

CASE - I :

Initial velocity of the car (u) = 5 m/s

Time (t) = 10 sec

Final velocity of the car (v) = 20 m/s

Using First equation of motion ,

\begin{gathered}\\ \star \:\large\boxed{\purple{\sf{v = u + at}}} \\\end{gathered}

v=u+at

By substituting the values we have ,

\begin{gathered}\\ : \implies \sf \: 20 \: m {s}^{ - 1} = 5 \: m {s}^{ - 1} + a(10 \: s) \\ \\\end{gathered}

:⟹20ms

−1

=5ms

−1

+a(10s)

\begin{gathered}\\ : \implies \sf \: 20 \: m {s}^{ - 1} - 5 \: m {s}^{ - 1} = a(10 \: s) \\ \\\end{gathered}

:⟹20ms

−1

−5ms

−1

=a(10s)

\begin{gathered}\\ :\implies \sf \: 15 \: m {s}^{ - 1} = a(10 \: s) \\ \\\end{gathered}

:⟹15ms

−1

=a(10s)

\begin{gathered}\\ : \implies \sf \dfrac{15 \:m{s}^{ - 1}}{10 \: s} = a \\ \\\end{gathered}

:⟹

10s

15ms

−1

=a

\begin{gathered}\\ : \implies \boxed{\pink{\mathfrak{a =1.5 \: m {s}^{ - 2} }}} \: \bigstar \\ \\\end{gathered}

:⟹

a=1.5ms

−2

Hence , The accleeration of the car is 1.5 m/s²

━━━━━━━━━━━━━━━━━━━━━━━

CASE - II :

Initial velocity of the car (u) = 5 m/s

Time (t) = 20 sec

Final velocity of the car (v) = 0 m/s [ since it came to rest]

Acceleration (a) = ?

using First equation of motion ,

\begin{gathered}\\ : \implies \sf \: 0 \: m {s}^{ - 1} = 5 \: m {s}^{ - 1} + a(20 \: s) \\ \\\end{gathered}

:⟹0ms

−1

=5ms

−1

+a(20s)

\begin{gathered}\\ : \implies \sf \: - 5 \: m {s}^{ - 1} = a(20 \: s) \\ \\\end{gathered}

:⟹−5ms

−1

=a(20s)

\begin{gathered}\\ : \implies \sf \: a = \frac{ - 5 \: m {s}^{ - 1} }{20 \: s} \\ \\\end{gathered}

:⟹a=

20s

−5ms

−1

\begin{gathered}\\ : \implies{\boxed{\mathfrak{\pink{a = - 0.25 \: m {s}^{ - 2} }}}} \: \bigstar \\ \\\end{gathered}

:⟹

a=−0.25ms

−2

Hence , The acceleration of the car is - 0.25 m/s² . [ Negative sign indicates deceleration]

Similar questions