Math, asked by Rjs9, 1 year ago

a car is moving at uniform speed of 72 km/h . the driver sees a child at a distance of 50m and applies brakes to stop the car before the child. calculate the acceleration.

Answers

Answered by TANI2610
22
hy user
here is the ans
hope it helps!!
Attachments:

Rjs9: rhank u bro
TANI2610: Umm thankyou sis likho..lol
TANI2610: And pls mark it as brainliest answer
Answered by Anonymous
13

 \bf{\underline{\underline{Answer:}}}

  •  \tt The \:acceleration = - 4 \:m\: s^{-2}

 \bold{\underline {Given:}}

  •  \tt Car\: uniform\: speed = 72 \:km\: h ^{-1}

  •  \tt Driver \:sees \:a \:child\: at \:distance\: = \:50 \:m

 \bold{\underline {To \:find :}}

  •  \tt The \:acceleration<strong> </strong><strong>=</strong> ?

 \bf{\underline{\underline{Step\: by\: step \:explanation:}}}

 \tt Initial\: velocity,\: u \:= \:72 \:km\: h^{-1}\:\:\:\:\:[\sf Given]\\ \\= \tt \dfrac{72 \times 1000}{60 \times 60}\\ \\ = \tt \dfrac{720}{36}\\ \\ \tt = 2 \:m\:s^{-1}

 \rule{200}{2}

  • Distance, s = 50 m

  • Final velocity, v = 0

  • Acceleration = a =?

 \bigstar \boxed{\tt v^2 = u^2 + 2as}

Substituting the values in the above equation, we get ;

 :\implies \tt 0 = 20^2 + 2 \times a \times 50 \\ \\ : \implies \tt 100a = - 400 \\ \\ :\implies \tt a = \dfrac{-400}{100}\\ \\ :\implies \tt{\boxed {\green {a =\tt - 4\: m\: s^{-2}}}}

 {\bf {Thus, \:The\: acceleration}} = \tt{\boxed {\green {a =\tt - 4\: m\: s^{-2}}}}

Similar questions