Physics, asked by joseph4898, 9 months ago

A car is moving in a circular horizontal track of radius 10 m
with a constant speed of 10 m/s. A bob is suspended from
the roof of the car by a light wire of length 1.0 m. The angle
made by the wire with the vertical is [NEET Kar. 2013]
(a) 0° (b) π/3
(c) π/6
(d)π/4

Answers

Answered by TheSentinel
52

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{A \  car \  is \ moving \ in  \ a \ circular \   horizontal}

\rm{track \ of \ radius \ 10 \  m \ with \  a \  constant}

\rm{ speed \ 10 ms^-1 \  bob \  is \ suspended \  from}

\rm{the \ roof \ of \  the \  car \  by \  a \  light \  wire \ of}

\rm{length \  1.0 m. \ The \ angle \ made \ by \  the \  wire }

\rm{with \ the \ vertical \  is}

\rm{ [NEET \  Kar. \ 2013]} \\

\rm{(a) 0°}

\rm{(b) π/3}

\rm{(c) π/6}

\rm{(d)π/4}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{\orange{\underline{\purple{The \ angle \ made \ by \  the \  wire \  with }}}}

\rm{\orange{\underline{\purple{the \  vertical \ is }}}}

\rm{\orange{\boxed{\purple{\star{(d)π/4}}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{Radius \ of \ the \ curved \ path \ : \ 10m} \\

\rm{Speed = 10 ms^-1} \\

\rm{Length \ of \ wire \ = \ 1.0m} \\

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Angle \ made \ by \ wire \ with \ vertical}

_________________________________________

\purple{\underline{\underline{\blue{\boxed{\boxed{\pink{\star{\sf Solution:}}}}}}}} \\ \\

\rm{We \ are \ given }

\rm{Radius \ of \ the \ curved \ path \ : \ 10m} \\

\rm\implies{r=10m}

\rm{Speed (v) = 10 ms^-1} \\

\rm{Length \ of \ wire \ = \ 1.0m} \\

\rm{Let \ \theta \ be \ the \ angel \ made \ by \ wire}

\rm{with \ vertical}

\rm{From \ the \ figure \ (check\ the \ attachment)} \\

\rm{We \ know ,} \\

\rm{T sin\theta \ = \ \frac{mv^{2}}{r} \ ......[centripetal \ force] \ ....(1)}\\

\rm{T cos\theta \ = \ mg \ ........[ force] \ ....(2)} \\ \\

\rm{From \ equation \ (1) \ and \ (2)} \\

\rm{\frac{T sin\theta}{T cos\theta} \ = \ \frac{mv^{2}}{r} \times \frac{1}{mg}} \\ \\

\rm\therefore{\green{\boxed{\orange{tan\theta \ = \ \frac{v^2}{rg}}}}} \\ \\

\rm\implies{tan\theta \ = \ \frac{10^2}{10 \times 10}} \\ \\

\rm\implies{tan\theta \ = \ \frac{10^2}{10 \times 10}} \\ \\

\rm\implies{tan\theta \ = \ 1} \\ \\

\rm\implies{\theta \ = \ tan^{-1}} \\ \\

\rm\implies{\theta \ = \ \frac{\pi}{4} \ ......... \ (as \ tan(45°) =1)}

\rm{\orange{\underline{\purple{The \ angle \ made \ by \  the \  wire \  with }}}}

\rm{\orange{\underline{\purple{the \  vertical \ is }}}}

\rm{\orange{\boxed{\purple{\star{(d)π/4}}}}}

_________________________________________

\rm\red{Hope \ it \ helps \ :))}

Attachments:

BrainlyRaaz: Perfect ❤️
Similar questions