Physics, asked by gaurav10806, 5 months ago

A car is moving on a circular road of diameter 50 m with a speed 5 ms-1. It is
suddenly accelerated at a rate 1 ms-2. If mass is 500 kg, net force acting on the
car is :​

Answers

Answered by Anonymous
4

Answer:

Explanation:

Given :

  • Diameter of a circular road (d) = 50m
  • Speed of a car (v) = 5 m/s
  • Interial acceleration (a) = 1 m/s²
  • Mass of a car (m) = 500 kg

To Find :

  • Net force acting on the car, Fₙₑₜ

Solution :

Converting unit,

 \implies \sf \: r =  \dfrac{d}{2}  \\  \\  \implies \sf \: r  =  \not \dfrac{50}{2}  \\  \\  \implies \sf \green{ r  = 25 \: m}

★Radial acceleration (aᵣ),

 \implies \sf \:  a_{r} =  \dfrac{v {}^{2} }{r}  \\  \\ \implies \sf \:  a_{r} = \dfrac{5 {}^{2} }{25}  \\  \\ \implies \sf \:  a_{r} =  \not\dfrac{25}{25}  \\  \\ \implies \sf \red{ a_{r} =1 ms {}^{ - 2} }

Net acceleration (aₙₑₜ),

\implies \sf \:  a_{net} =  \sqrt{(a_t) {}^{2} + ( \sqrt{a_r }) {}^{2}   }  \\  \\   \implies \sf \:  a_{net} =  \sqrt{1 {}^{2} + 1 {}^{2}  }  \\  \\   \implies \sf \:  a_{net} =  \sqrt{1 + 1}  \\  \\  \implies \sf \purple{  a_{net} =  \sqrt{2} ms^{-2} }

Net force (Fₙₑₜ) acting on the car,

\implies \sf \: F_{net} = m \times  a_{net} \\  \\ \implies \sf \: F_{net} = 500 \times  \sqrt{2}  \\  \\ \implies\sf  \orange{F_{net} = 500 \sqrt{2} N}


Anonymous: Speechless answer
ItzInnocentPrerna: raj please unblock kr
ItzInnocentPrerna: bahot important baat krni h
Answered by anshu24497
0

\large\sf\underline{\color{green}{Given :}}

  • \sf{\purple{Diameter~of~a~circular ~road~ (d) ~= ~50m}}

  • \sf{\purple{Speed ~of ~a ~car~ (v) ~=~ 5~ m/s}}

  • \sf{\purple{Interial ~acceleration ~(at)~ =~ 1 ~m/s²}}

  • \sf{\purple{Mass ~of ~a ~car~ (m) ~= ~500~ kg}}

\large\sf\underline{\color{green}{To~Find :}}

  • \sf{\color{royalblue}{Net~ force~ acting ~on ~the ~car~, Fnₑt}}

\large\sf\underline{\color{green}{Solution :}}

Converting unit

\begin{gathered}\implies \sf { \color{deepskyblue}\: {r = \dfrac{d}{2}}} \\ \\ \implies \sf \:{ \color{deepskyblue}{ r = \cancel \dfrac{50}{2}}} \\ \\  \boxed{\implies \sf{ \color{deepskyblue}{ r = 25 \: m}}}\end{gathered}

Radial acceleration (aᵣ),

\begin{gathered}\implies \sf \:{ \pink{ a_{r} = \dfrac{v {}^{2} }{r}}} \\ \\ \implies \sf \: { \pink{a_{r} = \dfrac{5 {}^{2} }{25}}} \\ \\ \implies \sf \:{ \pink{ a_{r} = \cancel\dfrac{25}{25}}} \\ \\ \: \boxed {\implies \sf \pink{ a_{r} =1 ms {}^{ - 2} }}\end{gathered}

Net acceleration (aₙₑₜ),

\begin{gathered}\implies \sf \:{ \color{orange}{ a_{net} = \sqrt{(a_t) {}^{2} + ( \sqrt{a_r }) {}^{2} }}} \\ \\ \implies \sf \:{ \orange{ a_{net} = \sqrt{1 {}^{2} + 1 {}^{2} } }}\\ \\ \implies \sf \:{ \orange{ a_{net} = \sqrt{1 + 1}}} \\ \\  \boxed{\implies \sf \orange{ a_{net} = \sqrt{2} ms^{-2} }}\end{gathered}

Net force (Fₙₑₜ) acting on the car,

\begin{gathered}\implies \sf \:{ \red{ F_{net} = m \times a_{net}}} \\ \\ \implies \sf \:{ \red{ F_{net} = 500 \times \sqrt{2}}} \\ \\  \boxed{\implies\sf \red{F_{net} = 500 \sqrt{2} N}}\end{gathered}

Similar questions