Physics, asked by ansarishaan678, 2 months ago

. A car is moving with 18 km/h. It accelerates at 2m/s2

find the

displacement if it attains the final velocity of 72 km/h?​

Answers

Answered by aarthikumari912
2

Explanation:

s=93.75m

hope it helps you

Attachments:
Answered by Yuseong
7

Answer:

93.75 m

Explanation:

As per the provided information in the given question, we have :

  • Initial velocity (u) = 18 km/h
  • Acceleration (a) = 2 m/s²
  • Final velocity (v) = 72 km/h

We are asked to calculate the displacement.

Before commencing the steps, let's first convert the velocities in its standard form, that is m/s.

Converting initial velocity in m/s :

 \longmapsto \rm { u = 18 \; kmh^{-1} } \\

  • 1 km/h = 5/18 m/s

 \longmapsto \rm { u = \Bigg ( 18 \times \dfrac{5}{18} \Bigg ) \; ms^{-1} } \\

 \longmapsto \bf { u = 5 \; ms^{-1} } \\

★ Converting final velocity in m/s :

 \longmapsto \rm { v = 72 \; kmh^{-1} } \\

1 km/h = 5/18 m/s

 \longmapsto \rm { v = \Bigg ( 72 \times \dfrac{5}{18} \Bigg ) \; ms^{-1} } \\

 \longmapsto \rm { v = \Big ( 4 \times 5 \Big ) \; ms^{-1} } \\

 \longmapsto \bf { v = 20 \; ms^{-1} } \\

Now, by using the third equation of motion:

 \longmapsto \bf { v^2 - u^2 = 2as} \\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • s denotes distance/displacement (displacement, when motion in is straight line)

 \longmapsto \rm { (20)^2 - (5)^2 = 2(2)s} \\

 \longmapsto \rm { 400-25 = 4s} \\

 \longmapsto \rm { 375 =  4s} \\

 \longmapsto \rm {\dfrac{ 375 }{4}= s} \\

 \longmapsto \bf { 93.75 \; m = s} \\

Displacement is 93.75 m.

 \rule{200}2

Additional Information :

Three equations of motion :

 \boxed{ \begin{array}{cc}    \pmb{\sf{ \quad \: v = u + at \quad}}  \\  \\  \pmb{\sf{ \quad \:  s= ut +  \cfrac{1}{2}a{t}^{2}  \quad \: } } \\ \\  \pmb{\sf{ \quad \:  {v}^{2} -  {u}^{2}  = 2as \quad \:}}\end{array}}

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time
  • s denotes distance/displacement
Similar questions