Physics, asked by nishikaa1655, 1 year ago

A car is moving with a velocity of 72 km/h .its velocity is reduced to 36 km/h after covering a distance of200m .calculate retardation in cm/s

Answers

Answered by yuvrajkj
3
Given,
initial velocity, u = 73km/h
final velocity,v = 36km/h
displacement, s = 200m or 1/5km

applying third law of motion
v^2 = u^2 + 2as
=> 1296 = 5329 + 2a/5
=> 2a/5 = -4033
=> a = -4033 x 5/2
=> 10,082
Answered by Anonymous
3

\;\underbrace{\underline{\sf{Required\: Answer:}}}

case I :

  • initial velocity, u = 72km/h
  • final velocity, v = 36km/h
  • distance, s = 200m

• First, we have to convert the unit of velocity from km/h to m/s

• For converting km/h to m/s multiply the velocity by 5/18

\begin{gathered} \bold{\implies u = \cancel{72 }\times \frac{5}{ \cancel{18}} m {s}^{ - 1}} \: \: \: \: \\ \\ \bold{ \implies u = 4 \times 5 \: m {s}^{ - 1} } \: \: \: \: \: \: \: \: \: \\ \\ \bold{ \implies u = 20 \: m {s}^{ - 1} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

\bf{And}

\begin{gathered} \bold{ \implies \: v = \cancel{ 36 }\times \frac{5}{ \cancel{18}} \: m {s}^{ - 1} } \: \\ \\ \bold{ \implies v = 2 \times 5 \: m {s}^{ - 1} } \: \: \: \: \: \: \: \: \: \\ \\ \bold{ \implies v = 10 \: m {s}^{ - 1} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

________________________________

So now we have,

  • initial velocity, u = 20 m/s
  • final velocity, v = 10 m/s
  • distance, s = 200m
  • retardation = ?

Now, by third equation of motion:

\begin{gathered}\boxed{ \purple{\bold{{v}^{2} = {u}^{2} + 2as}}} \\ \end{gathered}

\begin{gathered} \bold{ : \implies {(10)}^{2} = {(20)}^{2} + 2 \times a \times 200} \\ \\ \bold{ : \implies100 = 400 + 400a} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies 400a = 100 - 400 } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies a = \frac{ - 3 \cancel{00}}{4 \cancel{00}} } \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies a = - \frac{3}{4} \: m {s}^{ - 2} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

now, convert the unit of acceleration,a into cm/s²

\begin{gathered} \bold{ : \implies a = \frac{ - 3 \times \cancel{100}}{ \cancel{4}}cm \: {s}^{ - 2} } \\ \\ \bold{: \implies a = - 3 \times 25 \: cm \: {s}^{ - 2} } \: \: \\ \\ \bold{ : \implies \boxed{ \bold{ a = - 75 \: cm \: {s}^{ - 2} }} } \: \: \: \: \: \: \: \: \end{gathered}

[negative sign is indication of retardation. as we know that, negative acceleration is called retardation]

So, retardation produced by the car is 75cm/s²

______________________________

★ case II :

  • initial velocity, u = 10m/s
  • final velocity, v = 0m/s
  • acceleration, a = -75cm/s² = -3/4m/s²
  • distance, s = ?

By third equation of motion:

\begin{gathered}\boxed{ \red{\bold{{v}^{2} = {u}^{2} + 2as}}} \\ \end{gathered}

\begin{gathered} \bold{: \implies \: {(0)}^{2} = {(10)}^{2} + \cancel{ 2} \times \frac{ - 3}{ \cancel{4}} \times s } \\ \\ \bold{ : \implies0 = 100 + \frac{ - 3}{2} \times s \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ \\ \bold{ : \implies - \frac{3s}{2} = - 100 } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies \: s = \frac{ - 100 \times - 2}{3} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{: \implies s = \cancel{\frac{ 200}{3}} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies s = 66. 6\bar{6}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies \boxed{ { \bold{s =66. 67 \: m}}} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

So, distance covered by the car before coming to rest is 66.67 m

________________________________

\bf\underline\orange{ Additional\:Information :-}

  • First equation of motion : at = v - u
  • second equation of motion : s = ut + ½ at²
  • third equation of motion : v² = u² + 2as

________________________________

Similar questions