Math, asked by sidneet60, 7 months ago

A car moves at the uniform speed of (216/5) km per hour. How much distance will it cover in (10/3) hours?​

Answers

Answered by BrainlyConqueror0901
108

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:travelled=144\:km}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{ \bold{Given:}}} \\  \tt:  \implies Uniform \: speed =  \frac{216}{5}  \: km/h \\  \\ \tt:  \implies time =  \frac{10 }{3}  \: hr\\  \\   \red{\underline{ \bold{To \: Find : }}} \\  \tt: \implies Distance \: travel =?

• According to given question :

 \bold{Short \: method} \\  \tt:  \implies Distance = Speed \times Time \\  \\ \tt:  \implies Distance = \frac{216}{5}  \times  \frac{10}{3}  \\  \\ \tt:  \implies Distance =72 \times 2 \\  \\  \green{\tt:  \implies Distance =144 \: km} \\  \\ \tt \circ \: Acceleration = 0 \: km/{h}^{2} \:  \:  \:  \: (uniform \: speed) \\  \\  \tt \circ \: Speed =  \frac{216}{5}    \:km/h  \\  \\  \tt \circ \: Time =  \frac{10}{3} \: hr \\  \\  \bold{Alternate \: method : } \\  \tt: \implies s = ut +  \frac{1}{2}  {at}^{2 }  \\  \\ \tt: \implies s = \frac{216}{5}  \times  \frac{10}{3}  +  \frac{1}{2}  \times 0  \times (\frac{10}{3} )^{2}  \\  \\ \tt: \implies s =72 \times 2 \\  \\  \green{\tt: \implies s =144 \: km}

Similar questions