Physics, asked by omkarwadne29, 5 months ago

a car moves in a circle at the constant speed of50m/s and completes one revolution in 40s determine the magnitude of acceleration of the car​

Answers

Answered by madhaveegajjala
0

Answer:

uodifxlb is a C No is a great time in the discussion today I have a great time in the

Answered by Anonymous
5

\: \: \boxed{\boxed{\bf{\mapsto \:  \: Question}}}

a car moves in a circle at the constant speed of 50m/s and completes one revolution in 40s determine the magnitude of acceleration of the car

_____________________________________________

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Answer}}}

a car moves in a circle at the constant speed of 50m/s and completes one revolution in 40s. the magnitude of acceleration of the car is 7.85 m/s ²

______________________________________________

★ Formula Used :-

\begin{gathered}\\\;\boxed{\sf{\pink{acceleration\;=\;\bf{v(speed) \omega}}}}\end{gathered}

____________________________________________

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: Solution}}}

Given,

» Speed of the car = V = 50 m/s

» It complete one revolution in or time taken by the car to complete one revolution = T = 40s

To find ,

» magnitude of acceleration of the car = ?

~ Let's solve it ,

_____________________________________________

we know that ,

\begin{gathered}\\\;{\sf{{acceleration\;=\;\bf{v \omega}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf acceleration \: = v(  \dfrac{2\pi}{t}) }}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf acceleration \: = 50(  \dfrac{2 \times 3.142}{40}) }}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf acceleration \: = \dfrac{5}{2}  \times 3.142}}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\;\large{ \longrightarrow{\sf  acceleration \: =  \bold \blue{7.85 \: m/ {s}^{2}}  }}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: hence , acceleration = \underline{7.85 \: m/s^2}}}}

Similar questions