Science, asked by seesram91, 9 months ago

a car moves uniformly from 5m/s to 10m/s in 5 sec. calculate the acceleration and distance covered.​

Answers

Answered by RAGUP
3

a= v-u/ t

here,

v=10m/s

u=5 m/s

t= 5 s

hence

a=10-5/5 m/s^2

a=5/5

a=1 m/s^2

applying 3rd equation to find s

v^2-u^2=2as

100-25=2(1×s)

75=2s

s=37.5 m

Answered by SparklingThunder
2

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A car accelerates uniformly from 5m/s to 10m/s in 5s . Calculate the acceleration and the distance covered be the car in that time .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Acceleration of the car = 1 m/ \tt {s}^{2}

  • Distance Covered by car = 37.5 m

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Initial velocity ( u ) = 5 m/s

  • Final velocity ( v ) = 10 m/s

  • Time taken ( t ) = 5 s

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Acceleration of the car .

  • Distance covered by the car.

\green{ \large \underline{ \mathbb{\underline{ EQUATIONS \:  OF  \: MOTION \: USED : }}}}

 \large{\purple{ \boxed{\begin{array}{l}  \sf v = u + at \\  \\ \sf  {v}^{2} -  {u}^{2} = 2as \:  \:   \end{array}}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

    \large{\purple{ \underline{\underline{\textsf{Acceleration of the car}}}}}

\displaystyle \sf \longrightarrow v = u + at  \:  \:  \:  \:  \:  \:    \: \\  \\ \displaystyle \sf \longrightarrow 10 = 5 + a(5)  \\\  \\ \displaystyle \sf \longrightarrow 10 = 5 + 5a \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow 5 + 5a = 10 \:  \:  \:   \\  \\ \displaystyle \sf \longrightarrow 5a = 10 - 5 \: \:   \\  \\ \displaystyle \sf \longrightarrow 5a = 5\: \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow a =  \frac{5}{5}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ \displaystyle \sf \longrightarrow a = 1 \: m {s}^{ - 2}  \:  \:  \:  \:  \:

    \large{\purple{ \underline{\underline{\textsf{Distance Covered by car}}}}}

  \:  \: \displaystyle \sf \longrightarrow  {v}^{2}  -  {u}^{2} = 2as \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow  {(10)}^{2}  -  {(5)}^{2}  = 2(1)s  \: \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow  100 - 25 = 2s \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\\displaystyle \sf \longrightarrow   75 = 2s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  \displaystyle \sf \longrightarrow  2s = 75  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \displaystyle \sf \longrightarrow  s = \frac{75}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow s = 37.5 \: m  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \:

  \purple{\boxed{ \begin{array}{l}    \textsf{Acceleration of the car = 1 m${ \sf s}^{ - 2}$ } \\  \\  \textsf{Distance Covered by car = 37.5 m} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  • Acceleration

Acceleration is the rate at which velocity changes with time .

  • Initial Velocity

Initial velocity is the velocity of the object before the effect of acceleration .

  • Final Velocity

Final velocity is the velocity of the object after the effect of acceleration .

  • Distance

Distance is the length of actual path covered by a moving object in a given time interval .

   \Large{\purple{\boxed{\begin{array}{l} \textsf{Equations of motion : } \\  \\  \textsf{v = u + at} \\  \\   \displaystyle\textsf{s = ut +  $ \sf\frac{1}{2}a {t}^{2} $ } \\  \\ \sf  {v}^{2} -  {u}^{2}  =  2as \end{array}}}}

Similar questions