Math, asked by Pojero0001, 1 month ago

a car of mass 1000kg accelerates from 18 km / h to 36 km/ h in 5 s. find (a) acceleration (b) distance covered by car (c) force​

Answers

Answered by Anonymous
75

Given :-

  • Mass of car = 1000 kg.
  • Initial velocity (u) = 18 km/h.
  • Final velocity (v) = 36 km/h.
  • Time taken = 5s.

Need to find :-

  • Acceleration ?
  • Distance covered ?
  • Force ?

Solution :-

• first, we'll find acceleration.

• we know that, 1 km = 1000 m & 1 hr = 60 min.

Initial velocity (u) = { \sf{ \frac{18 \times 1000} {60 \times 60}  =  \frac{18000}{3600}  = 5m /s}}

Final velocity (v) = { \sf{ \frac{36 \times 1000} {60 \times 60}  =  \frac{36000}{3600}  = 10m /s}}

Formula Used :-

{ \boxed{ \sf{Acceleration = \frac{(v - u)}{t}}} }

Substituting the given values in the above equation: we get,

{ \sf{Acceleration =  \frac{10 - 5}{5} }}

{ \sf{Acceleration =  \frac{5}{5} }}

{ \sf{ \underline{Acceleration =1m/s}}}

Now, we'll find distance covered by car.

Formula Used :-

{ \boxed{ \sf{Distance = \: ut +  \frac{1}{2} at ^{2} }}}

Substituting the given values in the above equation: we get,

{ \sf{Distance =5 \times 5 +  \frac{1}{2}  \times 1 \times 5 ^{2} }}

{ \sf{Distance =25 +  \frac{1}{2}  \times \: 25}}

{ \sf{Distance =25 + 12.5}}

 \underline{ \sf {Distance =37.5m}}

Now, we'll find force.

Formula Used :-

 \boxed{ \sf{Force = \: mass \times acceleration}}

Substituting the given values in the above equation: we get,

{ \sf{Force = \: 1000 \times 1}}

{ \underline{ \sf{Force = \: 1000 \: N}}}

________________________

Similar questions