Physics, asked by destinyosawemwenze3, 1 year ago

A car of mass 1000kg is driven from its initial state with uniform acceleration and reaches a speed of 30 millimeters per hour in 10 seconds
Find the force exacted by the engine
The power in kilowatt

Answers

Answered by Anonymous
6
 \textbf{Answer : } \\ \\ \bold{Mass, \: m = 1000kg} \\ \\ \textbf{Initial Velocity , u = 0m/s} \\ \\ \bold{Final \: Velocity, \: v = 8.3 \times {10}^{-6} m/s} \\ \\ \textbf{Time, t = 10s} \\ \\ \textbf{Work Done = } \bold{F \times D} \\ \\ \bold{W} = \bold{\frac {1}{2} m{v}^{2}} \\ \\ W = 500 \times 68.89 \times {10}^{-12} \\ \\ \textbf{W} = \bold{344.5 \times {10}^{-10}} \\ \\ \textbf{D} = \bold{Speed \times time} \\ \\ D = 8.3 \times {10}^{-6} \times 10 \\ \\ \bold{\red{D}} = \bold{8.3 \times {10}^{-5} \: m }\\ \\ 344.5 \times {10}^{-10} = F \times 8.3 \times {10}^{-5} \\ \\ \textbf{F} = 41.50 \times {10}^{-5} Newton \\ \\ \textbf{Power} = \bold{\frac {Energy Consumed}{Time Taken}} \\ \\ P = \frac {344.5 \times {10}^{-10}}{10} \\ \\ P = 34.45 \times {10}^{-10} watt \\ \\ KWh= \frac {34.45 \times {10}^{-10}}{3.6 \times {10}^{6}} \\ \\ \bold{\red{KWh}} = \bold{9.569 \times {10}^{-16} \: KW/h}
Answered by Joshua1265
1

Answer:

Explanation:

\textbf{Answer : } \\ \\ \bold{Mass, \: m = 1000kg} \\ \\ \textbf{Initial Velocity , u = 0m/s} \\ \\ \bold{Final \: Velocity, \: v = 8.3 \times {10}^{-6} m/s} \\ \\ \textbf{Time, t = 10s} \\ \\ \textbf{Work Done = } \bold{F \times D} \\ \\ \bold{W} = \bold{\frac {1}{2} m{v}^{2}} \\ \\ W = 500 \times 68.89 \times {10}^{-12} \\ \\ \textbf{W} = \bold{344.5 \times {10}^{-10}} \\ \\ \textbf{D} = \bold{Speed \times time} \\ \\ D = 8.3 \times {10}^{-6} \times 10 \\ \\ \bold{\red{D}} = \bold{8.3 \times {10}^{-5} \: m }\\ \\ 344.5 \times {10}^{-10} = F \times 8.3 \times {10}^{-5} \\ \\ \textbf{F} = 41.50 \times {10}^{-5} Newton \\ \\ \textbf{Power} = \bold{\frac {Energy Consumed}{Time Taken}} \\ \\ P = \frac {344.5 \times {10}^{-10}}{10} \\ \\ P = 34.45 \times {10}^{-10} watt \\ \\ KWh= \frac {34.45 \times {10}^{-10}}{3.6 \times {10}^{6}} \\ \\ \bold{\red{KWh}} = \bold{9.569 \times {10}^{-16} \: KW/h}

Similar questions