Physics, asked by Mister360, 2 months ago

A car runs at a constant speed on a circular track of radius 150m taking 62.8s on each leap. The average speed and average velocity on each complete lap is? (π=3.14)​

Answers

Answered by rohithkrhoypuc1
5

Answer:

\underline{\purple{\ddot{\Mathsdude}}}

Given:-

  • A car runs at a constant speed on a circular track of radius 150m taking 62.8sec

To prove:-

  • average speed
  • average velocity

Proof:-

  • At first we should need to find circumference of the circle

Circumference of the circle = 2 pi r

= 2×22/7×150

=942m.

Now ,

Average speed =total distance/ time

= 942/62.8

= 15m/s

Therefore , starting point and ending point is same.

  • From this we can know that average velocity = 0m/s

Hopeit helps u mate .

Thank you .

Answered by TrustedAnswerer19
35

Answer:

\pink{\sf\:  \odot \sf \:  \: average \: speed \:  \:  \bar{v} = 15  \: m{s}^{ - 1} } \\ \orange {\sf   \: \odot \sf \: \: average \: velocity \:  \: v = 0 \: m {s}^{ - 1} } \\

Explanation:

Given,

  \odot \sf \: radius \: of \: a \: circular \: path \:  \: r = 150 \: m \\  \odot \sf \: Circumference \:  \: d = 2\pi \: r \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 2 \times 3.14 \times 150 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf = 942 \: m \\  \\ \pink{  \therefore  \sf\: distance \: d \:  = 942 \: m} \\  \\  \odot \sf \: time \:  \: t = 62.8 \: d

To find :

1) average speed = \bar{v}

2) average velocity

Solution:

1)

 \bf \:w e \: know \: that \:  \\  \sf \: average \: speed \:  \:  \bar{v} =  \frac{total \: distance(d)}{total \: time(t)}  \\  \therefore \:  \sf \bar{v} =  \frac{d}{t}  \\  \:  \:  \:  \:   \sf \:  \:  \:  \: =  \frac{942}{62.8}  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:   = 15 \: m {s}^{ - 1}  \\  \\   \pink{\sf\therefore \: average \: speed \:  \:  \bar{v} = 15  \: m{s}^{ - 1} }

2)

Here, initial point and final point are same.

So,

Displacement s = 0 m

cause,

displacement is a difference between final and initial point.

Now,

 \sf \: average \: velocity \:  \: v =  \frac{total \: displacement(s)}{total \: time(t)}  \\ \therefore \sf \:  \: v =  \frac{s}{t}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{0 }{62.8}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:     =  0 \: m {s}^{ - 1}  \\  \\  \orange {\sf\therefore \: average \: velocity \:  \: v = 0 \: m {s}^{ - 1} }

Similar questions