Physics, asked by yasirmalik7235, 10 months ago

A car start from rest and acquire a velocity of 54 km/h in 2 sec. Find
(i) the acceleration
(ii) distance travelled by car assume motion of car is uniform?​

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=7.5\:m/s^{2}}}}

\green{\tt{\therefore{Distance=15\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Initial \: velocity(u) = 0\: km/h \\  \\ \tt:  \implies Final \: velocity( v ) = 54 \: km/h \\\\ \tt:  \implies Time( t) = 2 \: sec \\  \\   \red{\underline \bold{To \: Find:}}\\ \tt:  \implies Acceleration(a) = ?\\\\ \tt:\implies Distance\:travelled=?

• According to given question :

 \tt \circ \: Initial \: velocity =0 \: m/s \\  \\  \tt \circ \: Final \: velocity = 54\times \frac{5}{18}=15 \: m/s  \\  \\  \tt \circ \: Time = 2\: sec \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\  \tt:  \implies  15=  0 + a \times 2 \\  \\ \tt:  \implies  15 = 2 \times a \\  \\ \tt:  \implies a =  \frac{15}{2}  \\  \\  \green{\tt:  \implies a =7.5 \: m/{s}^{2} }

 \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2} a {t}^{2}  \\  \\ \tt:  \implies s = 0 \times 2 +  \frac{1}{2}  \times 7.5 \times  {2}^{2}  \\  \\ \tt:  \implies s =  \frac{1}{2}  \times 7.5 \times 4 \\  \\  \green{\tt:  \implies s = 15 \: m}

Answered by Saby123
5

</p><p>\tt{\huge{\pink{Hello!!!! }}}

</p><p>\tt{\red{Given \: - }}

A car start from rest and acquire a velocity of 54 km/h in 2 sec.

</p><p>\tt{\orange{Step-By-Step-Explaination \: - }}

</p><p>\tt{\boxed{\boxed{\purple{A = \dfrac{V-U}{t} = 7.5 \: m/{s}^2 }}}} ...........(A)

By the Second Equation Of Motion ;

</p><p>\tt{\boxed{\boxed{\blue{S \: = \: UT \: + \: \dfrac{1}{2} A {T}^2 = 15 \: m. }}}} ............(A)

Similar questions