Physics, asked by Zainab9084, 10 months ago

A car start moving from rest with a constant acceleration of 5 m/s2 along a straight line.Find the distance tarvel by it in 2nd second

Answers

Answered by stylishtamilachee
4

Answer:

The distance travelled by the car in 2 second is 10 metre.

Explanation:

\textbf{Given: }

Initial velocity or u = 0

Acceleration or a = 5 m/s²

Time of journey or t = 2 seconds

\textbf{ To Find : }

Distance travelled or S = ?

\textbf{Solution : }

S = ut + ½ at²

\textbf{Calculation: }

S = ut + ½ at²

→ S = 0 × 2 + ½ × 5 × 2²

→ S = 0 + ½ × 5 × 4

→ S = 5 × 2

→ S = 10 m

To know:

initial velocity or u

initial velocity or u final velocity or v

initial velocity or u final velocity or v acceleration or a

initial velocity or u final velocity or v acceleration or a time of journey or t

and distance travelled or S.

Other equations of motion :

v = u + at

S = ut + ½ at²

v² = u² + 2aS

Answered by ItzArchimedes
17

 \large\underline{\underline{\mathcal{\color{blue}ANSWER:}}}

 \underline{\sf{Given:-}}

  •  \small\rm{Car\; is\; started\; from}\\

\;\;\;\;\;\;\;\;\rm{ rest \; that \; means \;      initial \;velocity (u) = 0 m/s}

  •  \small\rm{Acceleration ( a ) = 5m/s^2}

 \underline{\sf{To \;find:-}}

  •  \small\rm{Distance\; travelled\; at\; 2s}

 \underline{\sf{Solution:-}}

 \rm{Using \;the\; kinematic\; equation }: \\\bigstar\rm{s = ut+\dfrac{1}{2}at^2 }

 \longrightarrow s = 0(2) + \dfrac{1}{2}(5)(2)^2 \\\\ \longrightarrow s = 5 \times 2 \\ \\ \dagger\boxed{\bf{\color{green}Distance (s) = 10m}}

Similar questions