Physics, asked by sonwaneaditya24, 9 months ago

a car starting from rest acquires a speed pf 20m/s in covering a distance of 100m calculate the acceleration of thecar​

Answers

Answered by sidhugamer1
13

A car starting from rest (u) = 0 m/s

Car acquires the final speed (v) after starting= 20 m/s

Distance (s) covered by the car = 100 m.

To Find:

What is the acceleration (a) of the car ?

Formula to be used:

Newton's third law of motion

v² = u² + 2as

Solution: Let the acceleration of car be a. Putting the given values on formula

v² = u² + 2as

(20)² = (0)² + 2 a 100

400 = 0 + 200a

400 = 200a

400/200 = a

2 m/s² = a

Hence, the acceleration of the car is 2 m/s²

HOPE IT HELPS YOU BUDDY

Answered by BrainlyIAS
7

Answer

  • Acceleration of the car = 2 m/s²

Given

  • A car starting from rest acquires a speed of 20 m/s in covering a distance of 100 m

To Find

  • Acceleration

Concept Used

  • 3 rd equation of motion

\bigstar \;\; \bf v^2-u^2=2as

  • SI unit of acceleration is m/s²
  • SI unit of velocity is m/s
  • SI unit of Distance is meter

Solution

Initial velocity , u = 0 m/s [ ∵ Starts from rest ]

Final velocity , v = 20 m/s

Distance , s = 100 m

Apply 3 rd equation of motion .

⇒ v² - u² = 2as

⇒ (20)² - (0)² = 2a(100)

⇒ 400 - 0 = 200a

⇒ 400 = 200a

⇒ 200a = 400

⇒ 2a = 4

⇒ a = 2 m/s²

So , acceleration of the car , a = 2 m/s²

More Info

\boxed{\begin{minipage}{4cm} \bf Equations\ of\ motion\ :\\\\\rm \bigstar \;\; $v=u+at$\\\\\rm \bigstar \;\; s=ut+\dfrac{1}{2}at^2\\\\\rm \bigstar \;\; v^2-u^2=2as\\\\\rm \bigstar \;\; S_n=u+\dfrac{a}{2}[2n-1] \end{minipage}}

Similar questions