Physics, asked by shmga, 4 months ago

A car starts from point A, 25 km east of origin as shown in figure below. The car takes a turn at A and travels west with a constant velocity of 20 km/h for 1.5 h. What is the position of the car at end of the 1.5 h journey with respect to origin? Take the east direction to be the positive direction of the x-axis.

Answers

Answered by tmaheshbabu817
1

Explanation:

Let’s begin with a particle with an acceleration a(t) is a known function of time. Since the time derivative of the velocity function is acceleration,

\[\frac{d}{dt}v(t)=a(t),\]

we can take the indefinite integral of both sides, finding

\[\int \frac{d}{dt}v(t)dt=\int a(t)dt+{C}_{1},\]

where C1 is a constant of integration. Since

\[\int \frac{d}{dt}v(t)dt=v(t)\]

, the velocity is given by

\[v(t)=\int a(t)dt+{C}_{1}.\]

Similarly, the time derivative of the position function is the velocity function,

\[\frac{d}{dt}x(t)=v(t).\]

Thus, we can use the same mathematical manipulations we just used and find

\[x(t)=\int v(t)dt+{C}_{2},\]

where C2 is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a(t) = a a constant, and doing the integration in (Figure), we find

\[v(t)=\int adt+{C}_{1}=at+{C}_{1}.\]

If the initial velocity is v(0) = v0, then

\[{v}_{0}=0+{C}_{1}.\]

Then, C1 = v0 and

\[v(t)={v}_{0}+at,\]

which is (Equation). Substituting this expression into (Figure) gives

\[x(t)=\int ({v}_{0}+at)dt+{C}_{2}.\]

Doing the integration, we find

\[x(t)={v}_{0}t+\frac{1}{2}a{t}^{2}+{C}_{2}.\]

If x(0) = x0, we have

\[{x}_{0}=0+0+{C}_{2};\]

so, C2 = x0. Substituting back into the equation for x(t), we finally have

\[x(t)={x}_{0}+{v}_{0}t+\frac{1}{2}a{t}^{2},\]

by using formula do ans

Answered by Latifaalm9110
0

Answer:

-5 KM

Explanation:

Similar questions